• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação diferencial parcial] Ajuda para solução de EDP

[Equação diferencial parcial] Ajuda para solução de EDP

Mensagempor GustavoArtur » Qui Set 22, 2011 14:24

Olá a todos,

Sou novo no fórum e gostaria que algum me ajudasse a encontrar a solução de uma equação diferencial parcial linear de primeira ordem.
Vou começar descrevendo o problema: tenho duas equações diferenciais que descrevem a dinâmica de um trocador de calor solar, porém a que tenho interesse em encontrar a solução é a seguinte:

{A}_{i} \rho C\frac{\partial T}{\partial t}+q\rho C \frac{\partial T}{\partial x}={D}_{i}{h}_{i}({T}_{w}-T)

as seguintes variáveis são constantes:
{A}_{i}, \rho, C, q, {D}_{i}, {h}_{i}, {T}_{w}.

a variação esta em T.
Tentei fazer a resolução por um método que encontrei no livro: elements of mathematical ecology, onde se separa a solução em um produto de termos no tempo e espaço: n(x,t)=S(x)T(t). Neste caso tem-se T(x,t)=S(x)T(t).
Com isto fiz a substituição na equação original, porém, não consegui arranjar a equação com os termos com derivadas no tempo de um lado e derivadas no espaço no outro, como sugere o autor. Gostaria, se possível, que alguem me ajudasse dando dicas ou até mesmo indicando algum material para eu me basear para encontrar a solução.

att, Gustavo
GustavoArtur
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 22, 2011 13:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: [Equação diferencial parcial] Ajuda para solução de EDP

Mensagempor LuizAquino » Qui Set 22, 2011 23:48

GustavoArtur escreveu:{A}_{i} \rho C\frac{\partial T}{\partial t}+q\rho C \frac{\partial T}{\partial x}={D}_{i}{h}_{i}({T}_{w}-T)

as seguintes variáveis são constantes:
{A}_{i},\rho, C, q, {D}_{i}, {h}_{i}, {T}_{w}.

a variação esta em T.
Tentei fazer a resolução por um método que encontrei no livro: elements of mathematical ecology, onde se separa a solução em um produto de termos no tempo e espaço: n(x,t)=S(x)T(t).


Como você mesmo já notou, não é possível resolver essa EDP através do método de separação de variáveis.

Nesse caso, você precisa aplicar o método das características.

Abaixo seguem duas referências onde você pode obter mais informações sobre esse método. Entretanto, com um pesquisa pela internet você deve encontrar outros materiais.

Pinchover, Yehuda; Rubinstein, Jacob. An Introduction to Partial Differential Equations. New York: Cambridge University Press, 2005. 384 p.

The Method of Characteristics with applications to Conservation Laws
http://www.scottsarra.org/shock/shock.html
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Equação diferencial parcial] Ajuda para solução de EDP

Mensagempor MarceloFantini » Sex Set 23, 2011 00:19

Eu me lembro que no livro Methods of Mathematical Physics do autor Richard Courant há vários métodos para resolução de EDPs, pode ser que encontre algum jeito lá. É um livro difícil, já fica o aviso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Equação diferencial parcial] Ajuda para solução de EDP

Mensagempor GustavoArtur » Sex Set 23, 2011 12:58

ok, Vou tentar encontrar a solução pelo metodo das caracteristicas. Em breve posto a resposta se eu conseguir encontrar a solucao.
GustavoArtur
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 22, 2011 13:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}