Sou novo no fórum e gostaria que algum me ajudasse a encontrar a solução de uma equação diferencial parcial linear de primeira ordem.
Vou começar descrevendo o problema: tenho duas equações diferenciais que descrevem a dinâmica de um trocador de calor solar, porém a que tenho interesse em encontrar a solução é a seguinte:

as seguintes variáveis são constantes:
,
,
,
,
,
,
.a variação esta em
.Tentei fazer a resolução por um método que encontrei no livro: elements of mathematical ecology, onde se separa a solução em um produto de termos no tempo e espaço:
. Neste caso tem-se
.Com isto fiz a substituição na equação original, porém, não consegui arranjar a equação com os termos com derivadas no tempo de um lado e derivadas no espaço no outro, como sugere o autor. Gostaria, se possível, que alguem me ajudasse dando dicas ou até mesmo indicando algum material para eu me basear para encontrar a solução.
att, Gustavo



![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)