por baianinha » Sáb Ago 06, 2011 12:07
Como faço para encontrar os autevetores de um sistema linear/
tem alguma formula que me leve a encontrar?
Por exemplo nesse sistema
x-t=0
z-t=0
-
baianinha
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Qui Dez 16, 2010 12:15
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: matematica
- Andamento: cursando
por MarceloFantini » Sáb Ago 06, 2011 17:00
Para encontrar autovetores você precisará encontrar primeiro os autovalores do sistema. Você sabe fazer isto?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por baianinha » Sáb Ago 06, 2011 18:30
Sei sim. Para calcular os autovalores,tem que calcular o polinomio caracteristico.estou com duvidas só nos autovetores.
-
baianinha
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Qui Dez 16, 2010 12:15
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: matematica
- Andamento: cursando
por MarceloFantini » Sáb Ago 06, 2011 22:50
Para calcular os autovetores basta fazer

, onde

é a matriz dos coeficientes,

a matriz coluna das variáveis e

o autovalor. Resolvendo isso encontrará os autovetores associados àquele autovalor.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [autovalores/autovetores] Encontrar autovetores e autovalore
por amigao » Sáb Nov 23, 2013 15:42
- 1 Respostas
- 1849 Exibições
- Última mensagem por e8group

Sáb Nov 23, 2013 19:13
Álgebra Linear
-
- [autovetores] Como encontrar os autovetores.
por amigao » Ter Jul 01, 2014 20:23
- 2 Respostas
- 3983 Exibições
- Última mensagem por amigao

Qua Jul 02, 2014 14:45
Álgebra Linear
-
- autovalores e autovetores
por natan matos » Ter Nov 30, 2010 23:05
- 0 Respostas
- 1769 Exibições
- Última mensagem por natan matos

Ter Nov 30, 2010 23:05
Matrizes e Determinantes
-
- Álgebra Linear II - Autovalores e Autovetores
por Cleyson007 » Qua Nov 09, 2011 08:56
- 1 Respostas
- 2025 Exibições
- Última mensagem por MarceloFantini

Qua Nov 09, 2011 17:33
Álgebra Linear
-
- [Algebra Linear] autovalores e autovetores
por Angel31 » Sex Out 26, 2012 10:25
- 3 Respostas
- 2805 Exibições
- Última mensagem por MarceloFantini

Sáb Out 27, 2012 08:17
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.