• Anúncio Global
    Respostas
    Exibições
    Última mensagem

volume conico

volume conico

Mensagempor felipe170480 » Dom Jan 16, 2011 17:24

gostaria de uma ajuda, preciso da formula de calculo de uma figura q nao sei o nome...bom seria um cilindro conico, vou postar a imagem do q seria e conto com a ajuda de vcs mto obrigado
Anexos
cone cópia.jpg
segue a imagem com detalhes da figura
felipe170480
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Jan 16, 2011 16:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: volume conico

Mensagempor felipe170480 » Dom Jan 16, 2011 17:26

opa soh corrigindo....nao seria raio e sim diametro...obrigado
felipe170480
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Jan 16, 2011 16:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: volume conico

Mensagempor Dan » Dom Jan 16, 2011 17:39

Na verdade esse sólido deve ser pensado em duas partes: um cilindro e um tronco de cone.

O que você deseja calcular? Superfície ou volume?

De qualquer forma você encontra as fórmulas na internet. Basta procurar por cilindro e tronco de cone.

Caso você deseje calcular a superfície, não esqueça de descontar a base maior do tronco de cone e uma das bases do cilindro.

Qualquer dúvida é só falar.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: volume conico

Mensagempor felipe170480 » Dom Jan 16, 2011 17:49

Dan escreveu:Na verdade esse sólido deve ser pensado em duas partes: um cilindro e um tronco de cone.

O que você deseja calcular? Superfície ou volume?

De qualquer forma você encontra as fórmulas na internet. Basta procurar por cilindro e tronco de cone.

Caso você deseje calcular a superfície, não esqueça de descontar a base maior do tronco de cone e uma das bases do cilindro.

Qualquer dúvida é só falar.

caro amigo gostaria de calcular o volume, esta parte de baixo se chama tronco de cone eh isso? vou procurar mas se alguem ja tiver um link q pudesse postar ou a formula mesmo pq ja procurei mto e na verdade nao axo desta fig.
felipe170480
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Jan 16, 2011 16:32
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: volume conico

Mensagempor Dan » Dom Jan 16, 2011 17:51

Como você quer o volume as fórmulas são:

Tronco de cone: V = \frac{1}{3} \pi h \left({R}^{2} + Rr + {r}^{2} \right)

Onde h é a altura do tronco de cone, r é o raio da base menor e R é o raio da base maior.

Para calcular o volume do cilindro basta fazer área da base vezes altura.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?