• Anúncio Global
    Respostas
    Exibições
    Última mensagem

P.A de razão sendo outra P.A, ajuda

P.A de razão sendo outra P.A, ajuda

Mensagempor MariMari » Qui Set 30, 2010 18:55

Bom pessoal, essa é a minha primeira experiência com o fórum, boa tarde :)
Avancei um pouco nessa questão, porem não tive muito sucesso em alguns pontos.

Números naturais ímpares estão dispostos dessa forma

1
3 5
7 9 11
13 15 17 19
21 23 25 27 29

O número que inicia a 51ª linha é ?
(A) 2549 (B) 2551 (C) 2553 (D) 2555 (E) 2547

Bom, cheguei a conclusão de que essa primeira linha esta em progressão aritmética de razão igual a outra progressão aritmética.

{A}_{n}={A}_{1}+\left[\left(n-1 \right)\left({A}_{1*}+\left[n-2 \right]{r}_{*} \right) \right]
r={A}_{1*}+\left[n-2 \right]{r}_{*}

Num momento de quase inércia mental, eu tive um presságio sobre essa razão. Pensei '' na segunda P.A o correto será n-2 ao invés de n-1''
Isso está correto?

Mas voltando... Observando e aplicando essa resolução a valores já conhecidos por mim, já mostrados nessa disposição dos números, percebi que se trocasse r={A}_{1*}+\left[n-2 \right]{r}_{*} por apenas o n da equação '' base '', daria o valor que eu queria achar, ficando assim:

n=r

{A}_{n}={A}_{1}+\left(n-1 \right)n

Usando isso, eu encontrei o valor de (B) 2551

Essa resposta esta correta?
Eu provei pra apenas os valores testados que n=r, como provar isso matematicamente para todos os valores da P.A?
MariMari
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Set 29, 2010 23:48
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: P.A de razão sendo outra P.A, ajuda

Mensagempor Douglasm » Sex Out 01, 2010 14:44

Olá Mari. Deste jeito inicial, dará errado, pois você estará considerando a razão naquele determinado termo, e contará como se todos os outros termos tivessem sido somados utilizando aquela mesma razão. Você deve é somar todos os termos que tem, até chegar no 51º. Isso é simples, veja só:

3 = 1 + 2

7 = 1 + 2 + 4

13 = 1 + 2 + 4 + 6

21 = 1 + 2 + 4 + 6 + 8

É evidente que o enésimo termo será igual a 1 mais a soma de uma progressão de (n-1) termos e razão 2. Logo:

A_{51} = 1 + {50 . 51} = 2551
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: P.A de razão sendo outra P.A, ajuda

Mensagempor MariMari » Sex Out 01, 2010 15:40

Obrigada Douglas. Hoje cedo, eu refletindo um pouco sobre essa questão, percebi que estava errada. Comecei a fazer novamente e cheguei a r=n, o que se encaixa bem na sua resolução.
MariMari
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Set 29, 2010 23:48
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.