• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dificuldades em funções

Dificuldades em funções

Mensagempor DaniellaFlavia » Dom Mai 30, 2010 14:02

Estou com dificuldade em funções, sempre fui boa aluna mas agora sei lá... A sala toda está com dificuldade achamos que é o professor mas ele diz que não e ai fico na mesma não sei a matéria. Como não quero levar bomba me ajudem.

1) Sendo f(x)=23.x^2-1 e g(x)=23.x+3, determine:

a)f[g(x)]

b)g[f(x)]

Se puder fazer passo a passo para que eu consiga mesmo aprender agradeço
Não sei pq está aparecendo esse A grande, ele não existe é x ao quadrado apenas
Editado pela última vez por DaniellaFlavia em Dom Mai 30, 2010 14:18, em um total de 1 vez.
DaniellaFlavia
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mai 30, 2010 13:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dificuldades em funções

Mensagempor Neperiano » Dom Mai 30, 2010 14:05

Ola

Na a voce deve copiar a função f e substituir o x pelo valor de g(x), ou seja:

23(23x+3)A^2-1

Olha eu não sei o que é o A grande por isso não poderei ajudar na resolução

Na b ao contrario

23(23xA^2-1)+3

Primeiro resolva os parenteses e multiplique

Espero ter ajudado

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Dificuldades em funções

Mensagempor DaniellaFlavia » Dom Mai 30, 2010 14:36

Não sei pq está aparecendo aquele A grande, mas é apenas x ao quadrado.
Obrigado pela força
DaniellaFlavia
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mai 30, 2010 13:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dificuldades em funções

Mensagempor Molina » Dom Mai 30, 2010 14:46

Arrumei essa questão do "A grande".

Aparece esse "A" por causa do uso do LaTeX. Quando você usar [tex] e [/tex], você não pode usar o ², senão aparece aquele "A".

Modo que você escreveu: [tex]f(x)=23.x²-1[/tex] (modo errado)

Modo que tem que ser escrito: [tex]f(x)=23.x^2-1[/tex] (modo correto)

Qualquer dúvida quanto a digitação do LaTeX me procure!


E sobre a questão, conseguiu entender como resolvê-la?
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Dificuldades em funções

Mensagempor DaniellaFlavia » Dom Mai 30, 2010 14:50

Não consegui, vc pode me ajudar no passo a passo E obrigado pela explicação do LaTeX.
DaniellaFlavia
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mai 30, 2010 13:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dificuldades em funções

Mensagempor Molina » Dom Mai 30, 2010 15:19

DaniellaFlavia escreveu:Não consegui, vc pode me ajudar no passo a passo E obrigado pela explicação do LaTeX.

Ok, Daniella.

Você tem duas funções: f(x)=23x^2-1 e g(x)=23x+3

Numa função, tudo que tiver dentro do parênteses de f(_) nós substituiremos na função. Por exemplo:

f(x)=23x^2-1 (f de x)
f(a)=23a^2-1 (f de a)
f(\Phi)=23\Phi^2-1 (f de phi)
f(\circ)=23\circ^2-1 (f de bolinha)
.
.
.
E assim por diante.

a)f[g(x)]

Na questão a) ele que o f de g(x). Então o que faremos? Substituiremos, como fizemos a cima, o x por g(x):

f[g(x)]=23g(x)^2-1 (f de g(x))

Só que temos o valor de g(x), então substituiremos g(x) por 23x+3:

f[g(x)]=23g(x)^2-1
f[g(x)]=23*(23x+3)^2-1
f[g(x)]=23*(529x^2+138x+9)-1
f[g(x)]=12167x^2+3174x+206

E acabou! Agora faça o mesmo procedimento com a letra b)

Qualquer dúvida, escreva aqui!

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Dificuldades em funções

Mensagempor DaniellaFlavia » Dom Mai 30, 2010 16:10

Em outra questão , tenho x^2 - x + 1
terei de substituir o x^2 pelo valor de g ?
DaniellaFlavia
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mai 30, 2010 13:34
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?