• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Seno

Função Seno

Mensagempor thamires thais » Qui Jul 17, 2014 16:06

Estou com dificuldades para resolver esse questão. Se poderem me ajudar, ficarei grata.
Questão foto1
Anexos
1405620184821.jpg
Ajudeeem
thamires thais
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jul 17, 2014 15:54
Formação Escolar: ENSINO MÉDIO
Área/Curso: arquitetura
Andamento: cursando

Re: Função Seno

Mensagempor Russman » Qui Jul 17, 2014 22:25

Bom, me parece um problema de maximização. Você busca o maior ângulo que a função f(t) pode assumir. Este problema é resolvido calculando para qual t que a derivada de f(t) com relação a t se anula. Portanto,

\frac{\mathrm{d} }{\mathrm{d} t}f(t)=0 \Rightarrow \frac{\pi }{9}\frac{8 \pi }{3} \cos \left [ \frac{8 \pi}{3}\left (t-\frac{3}{4}  \right ) \right ]=0

e, de onde,

\cos \left [ \frac{8 \pi}{3}\left (t-\frac{3}{4}  \right ) \right ]=0  \Rightarrow \frac{8 \pi}{3} \left (t-\frac{3}{4}  \right ) = \left ( k+\frac{1}{2} \right ) \pi \Rightarrow t=\frac{3}{8}\left ( k+\frac{5}{2})

com k \in \mathbb{Z}.

Estamos interessados em tempo positivos. Então, para qual k inteiro que temos o menor tempo positivo? Esta pergunta é pertinente pois sendo a função seno periódica o ângulo máximo será atingido várias vezes e queremos saber a primeira vez que é atingido. Assim,

t>0 \Rightarrow  \frac{3}{8}\left ( k+\frac{5}{2} \right )>0 \Rightarrow k>-\frac{5}{2} \Rightarrow k>-2

e, daí, a primeira vez que o ângulo máximo é atingido é em

t= \frac{3}{8}\left ( -2+\frac{5}{2} \right ) = \frac{3}{16}.

Finalmente,

f\left ( \frac{3}{16} \right ) = \frac{ \pi}{9} \sin \left [ \frac{8 \pi}{3}\left ( \frac{3}{16} - \frac{3}{4} \right ) \right ] = \frac{\pi}{9} \sin \left [ -\frac{8 \pi}{3} \frac{9}{16}\right ] = \frac{\pi}{9}

Este angulo equivale a 20 ^{\circ}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Função Seno

Mensagempor thamires thais » Qui Jul 17, 2014 22:34

Russman escreveu:Bom, me parece um problema de maximização. Você busca o maior ângulo que a função f(t) pode assumir. Este problema é resolvido calculando para qual t que a derivada de f(t) com relação a t se anula. Portanto,

\frac{\mathrm{d} }{\mathrm{d} t}f(t)=0 \Rightarrow \frac{\pi }{9}\frac{8 \pi }{3} \cos \left [ \frac{8 \pi}{3}\left (t-\frac{3}{4}  \right ) \right ]=0

e, de onde,

\cos \left [ \frac{8 \pi}{3}\left (t-\frac{3}{4}  \right ) \right ]=0  \Rightarrow \frac{8 \pi}{3} \left (t-\frac{3}{4}  \right ) = \left ( k+\frac{1}{2} \right ) \pi \Rightarrow t=\frac{3}{8}\left ( k+\frac{5}{2})

com k \in \mathbb{Z}.

Estamos interessados em tempo positivos. Então, para qual k inteiro que temos o menor tempo positivo? Esta pergunta é pertinente pois sendo a função seno periódica o ângulo máximo será atingido várias vezes e queremos saber a primeira vez que é atingido. Assim,

t>0 \Rightarrow  \frac{3}{8}\left ( k+\frac{5}{2} \right )>0 \Rightarrow k>-\frac{5}{2} \Rightarrow k>-2

e, daí, a primeira vez que o ângulo máximo é atingido é em

t= \frac{3}{8}\left ( -2+\frac{5}{2} \right ) = \frac{3}{16}.

Finalmente,

f\left ( \frac{3}{16} \right ) = \frac{ \pi}{9} \sin \left [ \frac{8 \pi}{3}\left ( \frac{3}{16} - \frac{3}{4} \right ) \right ] = \frac{\pi}{9} \sin \left [ -\frac{8 \pi}{3} \frac{9}{16}\right ] = \frac{\pi}{9}

Este angulo equivale a 20 ^{\circ}.
thamires thais
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Jul 17, 2014 15:54
Formação Escolar: ENSINO MÉDIO
Área/Curso: arquitetura
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.