• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites Notáveis

Limites Notáveis

Mensagempor CarinafILIPA » Sex Fev 28, 2014 19:08

Olá bom dia.
Eu tentei resolver as seguintes equações e não consigo, será que me podem ajudar?


\lim_{x\rightarrow+\propto}\left({e}^{x}-{5}^{x} \right)

\lim_{x\rightarrow+\propto}\left(\frac{{x}^{3}}{{e}^{2x}-5} \right)

a primeira tentei resolver por uma mudança de variável para usar o limite notável
\lim_{x\rightarrow+\propto}\left(\frac{{e}^{x}}{{x}^{p}} \right)= +\propto

a segunda pensei numa mudança de variavel também no limite notável
\lim_{x\rightarrow0}\left(\frac{{e}^{ax}-1}{{a}^{x}} \right)= 1

não consegui resolver.
CarinafILIPA
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Fev 28, 2014 18:44
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites Notáveis

Mensagempor CarinafILIPA » Sáb Mar 01, 2014 12:46

Será que a resolução da primeira não é assim ?
\lim_{x\rightarrow+\propto}\left({e}^{x}-{5}^{x} \right)= \lim_{x\rightarrow+\propto}\left(\frac{{e}^{x}}{{-5}^{{x}^{-1}}} \right)= \lim_{x\rightarrow+\propto}-\left(\frac{{e}^{x}}{{5}^{{x}^{-1}}} \right)=-\propto
CarinafILIPA
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Fev 28, 2014 18:44
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites Notáveis

Mensagempor young_jedi » Sáb Mar 01, 2014 13:05

na verdade voce teria que

\lim_{x\to\infty}(e^x-5^x)

\lim_{x\to\infty}5^x\left(\frac{e^x}{5^x}-1\right)

\lim_{x\to\infty}5^x\left(\left(\frac{e}{5}\right)^x-1\right)

como \frac{e}{5}<1

então \lim_{x\to+\infty}\left(\frac{e}{5}\right)^x=0
portanto

\lim_{x\to\infty}5^x\left(\left(\frac{e}{5}\right)^x-1\right)=-\infty
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}