• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites Notáveis

Limites Notáveis

Mensagempor CarinafILIPA » Sex Fev 28, 2014 19:08

Olá bom dia.
Eu tentei resolver as seguintes equações e não consigo, será que me podem ajudar?


\lim_{x\rightarrow+\propto}\left({e}^{x}-{5}^{x} \right)

\lim_{x\rightarrow+\propto}\left(\frac{{x}^{3}}{{e}^{2x}-5} \right)

a primeira tentei resolver por uma mudança de variável para usar o limite notável
\lim_{x\rightarrow+\propto}\left(\frac{{e}^{x}}{{x}^{p}} \right)= +\propto

a segunda pensei numa mudança de variavel também no limite notável
\lim_{x\rightarrow0}\left(\frac{{e}^{ax}-1}{{a}^{x}} \right)= 1

não consegui resolver.
CarinafILIPA
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Fev 28, 2014 18:44
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites Notáveis

Mensagempor CarinafILIPA » Sáb Mar 01, 2014 12:46

Será que a resolução da primeira não é assim ?
\lim_{x\rightarrow+\propto}\left({e}^{x}-{5}^{x} \right)= \lim_{x\rightarrow+\propto}\left(\frac{{e}^{x}}{{-5}^{{x}^{-1}}} \right)= \lim_{x\rightarrow+\propto}-\left(\frac{{e}^{x}}{{5}^{{x}^{-1}}} \right)=-\propto
CarinafILIPA
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Fev 28, 2014 18:44
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites Notáveis

Mensagempor young_jedi » Sáb Mar 01, 2014 13:05

na verdade voce teria que

\lim_{x\to\infty}(e^x-5^x)

\lim_{x\to\infty}5^x\left(\frac{e^x}{5^x}-1\right)

\lim_{x\to\infty}5^x\left(\left(\frac{e}{5}\right)^x-1\right)

como \frac{e}{5}<1

então \lim_{x\to+\infty}\left(\frac{e}{5}\right)^x=0
portanto

\lim_{x\to\infty}5^x\left(\left(\frac{e}{5}\right)^x-1\right)=-\infty
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.