• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivadas] - dúvida: função quociente entre seno e arcotang

[derivadas] - dúvida: função quociente entre seno e arcotang

Mensagempor EnGENheiro_nota10 » Qui Set 26, 2013 21:22

Ola, sou novo aqui e gostaria de postar uma dúvida que não encontrei:
in: Guidorizzi, L.H - Derivadas; cap.7, pág.223, exercício 8.3, item 1:

y= sen(3x)/arc tang(4x)

Tentei fazer pela regra do quociente e por substituição de variável porém não consegui.
Podem me ajudar?
EnGENheiro_nota10
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Set 26, 2013 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [derivadas] - dúvida: função quociente entre seno e arco

Mensagempor Taka » Dom Nov 03, 2013 08:38

Nesse exercício deve-se usar a regra do quociente combinada com a regra da cadeia, se você não viu a regra da cadeia não irá conseguir fazer essa questão
Taka
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Nov 02, 2013 16:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Química
Andamento: cursando

Re: [derivadas] - dúvida: função quociente entre seno e arco

Mensagempor Taka » Dom Nov 03, 2013 08:49

Nesse exercício deve-se usar a regra do quociente combinada com a regra da cadeia, se você não viu a regra da cadeia não irá conseguir fazer essa questão.

Mas, mesmo assim, ai vai minha resolução
\frac{d\frac{sen(3x)}{arctg(4x)}}{dx} =
= \frac{\frac{d(sen(3x))}{dx}arctg(4x)-\frac{d(arctg(4x))}{dx}sen(3x)}{{arctg(4x)}^{2}}
= \frac{3cos(3x)arctg(4x)-\frac{4sen(3x)}{1+16{x}^{2}}}{{arctg(4x)}^{2}}
Taka
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Nov 02, 2013 16:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Química
Andamento: cursando

Re: [derivadas] - dúvida: função quociente entre seno e arco

Mensagempor EnGENheiro_nota10 » Dom Nov 03, 2013 11:17

Sim, consegui resolver com a ajuda do plantonista.Ele fez exatamente isso.
Então, é isso o que eu tentei fazer, regra da cadeia, que é substituição de variável (+ou- né? Enfim).
O que ficou confuso foi como derivar o que estava dentro e o que estava fora. *-)
Mas muito obrigado!
EnGENheiro_nota10
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Set 26, 2013 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}