• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação Cúbica]Calcular x^3 + y^3 = 9xy pela equação cúbica

[Equação Cúbica]Calcular x^3 + y^3 = 9xy pela equação cúbica

Mensagempor jricardo » Sáb Ago 17, 2013 01:13

Olá, estou estudando o livro Cálculo de George Thomas, edição 11°. Na página 205 deste livro, consegui entender o exemplo referente ao fólio de Descartes por meio da derivada implícita, porém, no final deste exemplo é apresentado uma outra forma de resolver o problema em questão, porém com o uso de uma fórmula para as três raízes de uma equação cúbica parecida com a fórmula quadrática {y}^{2} + {x}^{2}=2xy, que neste caso sería {x}^{3} + {y}^{3}=9xy.

Neste exemplo é apresentado como resultado as seguintes equações:

y = f(x) = \sqrt[3]{-\frac{{x}^{3}}{2} + \sqrt[2]{\frac{{x}^{6}}{4}}-27{x}^{3}}+\sqrt[3]{-\frac{{x}^{3}}{2}-\sqrt[2]{\frac{{x}^{6}}{4}}-27{x}^{3}}

e

y = \frac{1}{2}\left[-f(x)+\sqrt[2]{-3} \left(\sqrt[3]{-\frac{{x}^{3}}{2} + \sqrt[2]{\frac{{x}^{6}}{4}}-27{x}^{3}}-\sqrt[3]{-\frac{{x}^{3}}{2}-\sqrt[2]{\frac{{x}^{6}}{4}}-27{x}^{3}} \right) \right]

ou

y = \frac{1}{2}\left[-f(x)-\sqrt[2]{-3} \left(\sqrt[3]{-\frac{{x}^{3}}{2} + \sqrt[2]{\frac{{x}^{6}}{4}}-27{x}^{3}}-\sqrt[3]{-\frac{{x}^{3}}{2}-\sqrt[2]{\frac{{x}^{6}}{4}}-27{x}^{3}} \right) \right]

A dúvida é, como chegar a este resultado, pois o máximo que consegui foi:

y = f(x) = \sqrt[3]{9xy - {x}^{3}}

Alguém pode me ajudar.

Desde já, deixo o meu agradecimento.
jricardo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 31, 2013 22:21
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}