• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Produto Escalar] Coordenadas em base ortonormal

[Produto Escalar] Coordenadas em base ortonormal

Mensagempor LucasSG » Qua Mai 29, 2013 17:47

9-26) Prove que as coordenadas de qualquer vetor \vec{u} na base ortonormal B=(\vec{i}, \vec{j}, \vec{k}) são iguais aos produtos escalares de \vec{u} por \vec{i}, \vec{j}, \vec{k}.

Pessoal, estou com uma duvida sobre como resolver esta questão. Poosso afirmar que \vec{i}=(1,0,0) \vec{j}=(0,1,0), \vec{k}=(0,0,1)? Toda base ortonormal tem esta forma? Se sim eu consigo resolver, mas não quero afirmar isso sem ter certeza, porque no caso eu não estaria provando nada... *-)


Muito Obrigado desde já!.
LucasSG
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 22, 2013 08:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Produto Escalar] Coordenadas em base ortonormal

Mensagempor temujin » Qua Mai 29, 2013 18:08

Uma base é ortogonal se 2 vetores quaisquer do conjunto são ortogonais. E se eles tiverem norma unitária, a base é ortonormal. Esta em particular, a base canônica, é ortonormal, mas não é a única. Qualquer conjunto com 2 vetores L.I., com norma unitária, é ortonormal.
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Produto Escalar] Coordenadas em base ortonormal

Mensagempor LucasSG » Qui Mai 30, 2013 16:24

Sim, entendi, então como eu poderia prosseguir para provar?, o enunciado diz que u=(u.i).i+(u.j).j+(u.k).k, como eu mostro que isso é verdade?
LucasSG
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 22, 2013 08:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Produto Escalar] Coordenadas em base ortonormal

Mensagempor temujin » Qui Mai 30, 2013 23:12

Sejam \vec{u}=(a,b,c) \ , \ \vec{i}=(1,0,0)\ , \  \vec{j}=(0,1,0) \ e \ \vec{k}=(0,0,1).

Podemos escrever o vetor \vec{u} = a(1,0,0)+b(0,1,0)+c(0,0,1)

Esta é a expressão dos produtos escalares:

<\vec{u};\vec{i}>=a.1+b.0+c.0 = a
<\vec{u};\vec{j}>=a.0+b.1+c.0 = b
<\vec{u};\vec{k}>=a.0+b.0+c.1 = c
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}