• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Produto Escalar] Coordenadas em base ortonormal

[Produto Escalar] Coordenadas em base ortonormal

Mensagempor LucasSG » Qua Mai 29, 2013 17:47

9-26) Prove que as coordenadas de qualquer vetor \vec{u} na base ortonormal B=(\vec{i}, \vec{j}, \vec{k}) são iguais aos produtos escalares de \vec{u} por \vec{i}, \vec{j}, \vec{k}.

Pessoal, estou com uma duvida sobre como resolver esta questão. Poosso afirmar que \vec{i}=(1,0,0) \vec{j}=(0,1,0), \vec{k}=(0,0,1)? Toda base ortonormal tem esta forma? Se sim eu consigo resolver, mas não quero afirmar isso sem ter certeza, porque no caso eu não estaria provando nada... *-)


Muito Obrigado desde já!.
LucasSG
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 22, 2013 08:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Produto Escalar] Coordenadas em base ortonormal

Mensagempor temujin » Qua Mai 29, 2013 18:08

Uma base é ortogonal se 2 vetores quaisquer do conjunto são ortogonais. E se eles tiverem norma unitária, a base é ortonormal. Esta em particular, a base canônica, é ortonormal, mas não é a única. Qualquer conjunto com 2 vetores L.I., com norma unitária, é ortonormal.
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Produto Escalar] Coordenadas em base ortonormal

Mensagempor LucasSG » Qui Mai 30, 2013 16:24

Sim, entendi, então como eu poderia prosseguir para provar?, o enunciado diz que u=(u.i).i+(u.j).j+(u.k).k, como eu mostro que isso é verdade?
LucasSG
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 22, 2013 08:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Produto Escalar] Coordenadas em base ortonormal

Mensagempor temujin » Qui Mai 30, 2013 23:12

Sejam \vec{u}=(a,b,c) \ , \ \vec{i}=(1,0,0)\ , \  \vec{j}=(0,1,0) \ e \ \vec{k}=(0,0,1).

Podemos escrever o vetor \vec{u} = a(1,0,0)+b(0,1,0)+c(0,0,1)

Esta é a expressão dos produtos escalares:

<\vec{u};\vec{i}>=a.1+b.0+c.0 = a
<\vec{u};\vec{j}>=a.0+b.1+c.0 = b
<\vec{u};\vec{k}>=a.0+b.0+c.1 = c
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59