boa noite, estou tentando resolver esse exercício faz algum tempo mas ainda não compreendi como mostrar segue o exercício abaixo:
Fixe três algarismos distintos e diferentes de zero.Forme os seis números com dois algarismos distintos tomados dentre os algarismos fixados.Mostre que a soma desses números é igual a 22 vezes a soma dos três algarismos fixados.
considerei esses três algarismos como a,b e c onde {ab,ac,ba,bc,ca,cb} seria o seis números mas não consigo sair daqui, alguém pode me ajudar por favor.
obs: peço que não coloquem a resolução quero mesmo é a ideia de como resolver.


![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.