por matmatco » Seg Abr 08, 2013 22:52
boa noite, estou tentando resolver esse exercício faz algum tempo mas ainda não compreendi como mostrar segue o exercício abaixo:
Fixe três algarismos distintos e diferentes de zero.Forme os seis números com dois algarismos distintos tomados dentre os algarismos fixados.Mostre que a soma desses números é igual a 22 vezes a soma dos três algarismos fixados.
considerei esses três algarismos como a,b e c onde {ab,ac,ba,bc,ca,cb} seria o seis números mas não consigo sair daqui, alguém pode me ajudar por favor.
obs: peço que não coloquem a resolução quero mesmo é a ideia de como resolver.
-
matmatco
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qua Ago 24, 2011 17:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica UFV
- Andamento: cursando
por LuizAquino » Seg Abr 08, 2013 23:26
matmatco escreveu:boa noite, estou tentando resolver esse exercício faz algum tempo mas ainda não compreendi como mostrar segue o exercício abaixo:
Fixe três algarismos distintos e diferentes de zero.Forme os seis números com dois algarismos distintos tomados dentre os algarismos fixados.Mostre que a soma desses números é igual a 22 vezes a soma dos três algarismos fixados.
considerei esses três algarismos como a,b e c onde {ab,ac,ba,bc,ca,cb} seria o seis números mas não consigo sair daqui, alguém pode me ajudar por favor.
obs: peço que não coloquem a resolução quero mesmo é a ideia de como resolver.
DicaUm número de dois algarismos no formato xy na base decimal, pode ser reescrito como 10x + y.
Por exemplo, o número 28 pode ser reescrito como 2*10 + 8.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por matmatco » Ter Abr 09, 2013 20:22
não entendi seu raciocinio
-
matmatco
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qua Ago 24, 2011 17:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica UFV
- Andamento: cursando
por LuizAquino » Qua Abr 10, 2013 23:12
matmatco escreveu:não entendi seu raciocinio
Suponha que a = 2, b = 4 e c = 6. Neste caso, você teria o conjunto {24, 26, 42, 46, 62, 64}. Note que você pode reescrever este conjunto como sendo {2*10 + 4, 2*10 + 6, 4*10 + 2, 4*10 + 6, 6*10 + 2, 6*10 + 4}. Agora note o que acontece quando você soma estes números:
(2*10 + 4) + (2*10 + 6) + (4*10 + 2) + (4*10 + 6) + (6*10 + 2) + (6*10 + 4) = 2*(10 + 10 + 1 + 1) + 4*(1 + 10 + 10 + 1) + 6*(1 + 1 + 10 + 10)
= 2*22 + 4*22 + 6*22
= (2 + 4 + 6)*22
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por matmatco » Qui Abr 11, 2013 10:49
Suponha que a = 2, b = 4 e c = 6. Neste caso, você teria o conjunto {24, 26, 42, 46, 62, 64}. Note que você pode reescrever este conjunto como sendo {2*10 + 4, 2*10 + 6, 4*10 + 2, 4*10 + 6, 6*10 + 2, 6*10 + 4}. Agora note o que acontece quando você soma estes números:
(2*10 + 4) + (2*10 + 6) + (4*10 + 2) + (4*10 + 6) + (6*10 + 2) + (6*10 + 4) = 2*(10 + 10 + 1 + 1) + 4*(1 + 10 + 10 + 1) + 6*(1 + 1 + 10 + 10)
= 2*22 + 4*22 + 6*22
= (2 + 4 + 6)*22[/quote]
agora entendi mas fiquei com duvida de como vc encontrou esse 1 : 2*(10 + 10 + 1 + 1) + 4*(1 + 10 + 10 + 1) + 6*(1 + 1 + 10 + 10)
-
matmatco
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qua Ago 24, 2011 17:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica UFV
- Andamento: cursando
por LuizAquino » Qui Abr 11, 2013 11:58
matmatco escreveu:agora entendi mas fiquei com duvida de como vc encontrou esse 1 : 2*(10 + 10 + 1 + 1) + 4*(1 + 10 + 10 + 1) + 6*(1 + 1 + 10 + 10)
Por exemplo, observe os números
2 em destaque:
(
2*10 + 4) + (
2*10 + 6) + (4*10 +
2) + (4*10 + 6) + (6*10 +
2) + (6*10 + 4)
Agora responda: o que acontece se você colocar esses números em evidência? E se você colocar 4 em evidência? E quanto ao 6 em evidência?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por matmatco » Qui Abr 11, 2013 20:52
me desculpe mas ainda não entendi essa parte, tentei resolver usando sua ideia :
a,b e c distintos
o produto seria {ab,ac,ba,bc,ca,cb} reescrevendo seria a*(10+10+b+c)+b*(10+10+a+c)+c*(10+10+a+b) até aqui entendi mas como fazer aparecer esse número 1?
-
matmatco
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qua Ago 24, 2011 17:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica UFV
- Andamento: cursando
por LuizAquino » Sex Abr 12, 2013 00:07
matmatco escreveu:me desculpe mas ainda não entendi essa parte, tentei resolver usando sua ideia :
a,b e c distintos
o produto seria {ab,ac,ba,bc,ca,cb} reescrevendo seria a*(10+10+b+c)+b*(10+10+a+c)+c*(10+10+a+b) até aqui entendi mas como fazer aparecer esse número 1?
A ideia não é esta que você escreveu.
Considerando o conjunto {ab, ac, ba, bc, ca, cb}, podemos colocá-lo no formato {10a + b, 10a + c, 10b + a, 10b + c, 10c + a, 10c + b}. Somando estes números, ficamos com:
(10a + b) + (10a + c) + (10b + a) + (10b + c) + (10c + a) + (10c + b)
Em seguida, note que colocando
a em evidência ficamos com:
a(10 + 10 + 1 + 1) + b + c + 10b + 10b + c + 10c + 10c + b
Agora pense no seguinte: o que acontece ao colocar
b em evidência? E ao colocar
c em evidência?
ObservaçãoVocê também pode pensar da seguinte forma:
(10a + b) + (10a + c) + (10b + a) + (10b + c) + (10c + a) + (10c + b) = (10a + 10a + a + a) + (b + 10b + 10b + b) + (c + c + 10c + 10c)
= 22a + 22b + 22c
= 22(a + b + c)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por matmatco » Sex Abr 12, 2013 10:18
agora sim entendi, muito obrigado
-
matmatco
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qua Ago 24, 2011 17:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica UFV
- Andamento: cursando
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Aritmética- Duvida em questão do livro praticando aritmética
por wellkirby » Sex Ago 28, 2015 17:37
- 1 Respostas
- 3326 Exibições
- Última mensagem por wellkirby

Seg Set 07, 2015 23:15
Aritmética
-
- [Aritmética] Progressão Aritmética.
por Pessoa Estranha » Qua Ago 28, 2013 22:11
- 2 Respostas
- 5374 Exibições
- Última mensagem por Pessoa Estranha

Qui Ago 29, 2013 16:06
Aritmética
-
- aritmetica
por angeloka » Ter Out 12, 2010 23:52
- 2 Respostas
- 2387 Exibições
- Última mensagem por DanielRJ

Sáb Out 16, 2010 23:16
Álgebra Elementar
-
- Aritmética
por Renatinha » Seg Nov 08, 2010 19:46
- 2 Respostas
- 4836 Exibições
- Última mensagem por Molina

Seg Nov 08, 2010 23:01
Sequências
-
- aritmetica
por silvia fillet » Qua Out 12, 2011 21:32
- 0 Respostas
- 1253 Exibições
- Última mensagem por silvia fillet

Qua Out 12, 2011 21:32
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.