• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[variação de funções] raiz real

[variação de funções] raiz real

Mensagempor Erickvilela » Sex Fev 22, 2013 21:58

entao, estou tentando fazer uma questão do livro de guidorizzi de calculo I, entretanto não estou conseguindo
gostaria de pedir ajuda.

a questão é : Prove que a equação x^3 _ 3x^2 + 6 = 0 admite uma unica raíz real. Determine um intervalo de amplitude 1 que contenha tal raiz.

como faço ?
Erickvilela
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Fev 14, 2013 21:34
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: [variação de funções] raiz real

Mensagempor e8group » Sex Fev 22, 2013 23:15

Boa noite ,já tentou analisar os intervalos de crescimento e de decrescimento de f através de f' ?
Após isto conclua então que pelo TVI existe um c em [-2,-1] tal que f(c)  = 0 \in [f(2),f(-1)]\subset D_f =\mathbb{R} (OBS.: f é contínua )
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [variação de funções] raiz real

Mensagempor Erickvilela » Sex Fev 22, 2013 23:25

mas tipo, quando eu calculo f ' , vou ter:
3x^2 - 6x = 0, então x=2 e x=0, logo, os intervalos de crescimento e decrescimento vão ser:

cresce em ]-? , 0] e [2, +?[ ; e decresce em [0,2], mas como encontro o intervalo das raízes ?
Erickvilela
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Fev 14, 2013 21:34
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Re: [variação de funções] raiz real

Mensagempor e8group » Sáb Fev 23, 2013 13:35

Considerando f(x) = x^3 -3x^2+ 6

Temos f é estritamente crescente em I_1 = ]-\infty ,0] e I_2 =[2,+\infty[ e decrescente I_ 3 = [0,2] .

Vamos verificar em cada intervalo I_1, I_2, I_3 se há pelo menos um c em algum deles tal que f(c) = 0 .

(1)

Como x^3 , o termo dominante, possui grau impar , \lim_{x\to-\infty} f(x) = -\infty

e

como f(0) = 6 > 0

Assim ,existem a,b tais que f(a) < 0 e f(b) > 0 .Como f é contínua (Porque ? ) ,pelo TVI existe c \in [a,b] \subset I_1 tal que f(c) = 0 \in [f(a),f(b)] .


(2)

Como f(2) = 2 > 0 e \lim_{x\to+\infty} f(x) = + \infty (Porque ?),concluímos que pelo TVI não existe c em I_2 tal que f(c) = 0 .

(3)

Segue de imediato de (1) e (2) que f(0) e f(2) são ambos postivos ,sendo assim, 0\notin  [f(2),f(0)] , ou seja , não existe c em [0,
2] tal que f(c) = 0 .


Conclusão : f admite uma única raiz real ,pois, como já mencionado acima f é estritamente crescente em I_1 .

\blacksquare

Para determinarmos o intervalo de amplitude 1 que contenha c ,

veja que f(-2) < 0 e f(-1) > 0 ;assim \exists c \in [-2,-1] : f(c) = 0 .

Espero que ajude .

Editado erro de digitação .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: