• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequações

inequações

Mensagempor jose henrique » Ter Out 26, 2010 23:56

Resolva a inequação \frac{2x-1}{x+1}<\frac{x-3}{x+1}. Dê a resposta em termos de intervalo.

é necessário que o denominador não seja nulo, então x > -1
no numerador fica assim:
2x-1<x-3
2x-x<-3+1
x<-2

S= {X e R / x > -1 ou x < -2 }

está correto a resolução e a resposta?
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: inequações

Mensagempor MarceloFantini » Qua Out 27, 2010 04:29

No denominador você só pode afirmar que x \neq -1, apenas. Então a solução é \{ x \in \Re; \, x < -2 \text{ e } x \neq -1 \}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: inequações

Mensagempor jose henrique » Qua Out 27, 2010 07:30

obrigado!
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: inequações

Mensagempor MarceloFantini » Qua Out 27, 2010 07:42

Peço desculpas, minha resolução está incorreta (parcialmente).

Primeiro, x \neq -1 pois não se define divisão por zero. Agora, precisamos analisar dois casos: quando x+1>0 e quando x+1<0, ou seja, x>-1 e x<-1.

Analisando o primeiro:

Quando x+1>0, multiplicando os dois lados da desigualdade por x+1 nos leva a 2x-1<x-3 \rightarrow x < -2. Portanto, o primeiro conjunto é S_1=\{ x \in \Re; \, x> -1 \text{ e } x < -2\}.

Segundo caso:

Quando x+1<0, multiplicando os dois lados da desigualdade por x+1 nos leva a 2x-1>x-3 \rightarrow x>-2. Como não existe nenhum número que satisfaça tal condição, S_2 = \emptyset.

O conjunto solução geral é S = S_1 \cup S_2 = S_1 = \{ x \in \Re; \, x> -1 \text{ e } x< -2 \}.

Ou seja, a sua solução estava certa, José Henrique, mas faltava analisar caso a caso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: inequações

Mensagempor jose henrique » Qua Out 27, 2010 20:17

agradeço desde já, mas peço por favor que me explique a resolução de s2, pois fiz aqui e não consegui

multiplicando os dois lados da desigualdade encontramos após a resolução parcial

{x}^{2}+3x+2<0

eu achei
{x}_{I}<-2
{x}_{II}<-1

tá errado?
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: inequações

Mensagempor MarceloFantini » Qua Out 27, 2010 20:39

Multiplicou os dois lados da desigualdade pelo o que? Multiplicando por x+1 você elimina o denominador e o numerador permanece o mesmo, fique atento à esse detalhe.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: inequações

Mensagempor jose henrique » Qua Out 27, 2010 21:12

beleza, obrigado!
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: inequações

Mensagempor jose henrique » Qua Nov 03, 2010 16:25

olá tive refazendo está questão aqui e achei outro valor e pude perceber que em algum momento vc inverteu os sinais de < e > resolvi desta forma.
no caso do denominador a solução tem que ser maior que 0
então,
x+1>0 = X>-1

no numerador fica assim

2x-1<x-3
2x-1-x+3<0
x+2<0
x<-2

como a inequação tem ser menor que 0, então fica assim:
S= S={x \in\Re/-2 > x < -1}

eu utilizei as retas e os sinais para cada inequacação.
Tá errado a minha resolução?
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: inequações

Mensagempor MarceloFantini » Qua Nov 03, 2010 17:16

Como é que eu consigo falar tanta besteira em uma postagem só...

José, voltando no meu post antigo, vou consertar as cagadas que fiz. É o PRIMEIRO caso que não existe: não existe número tal que x>-1 e x<-2. Logo, S_1 = \emptyset.

Já no segundo caso: x<-1 e x>-2, levando à:

S = \{ x \in \Re\,; \: -2 < x < -1\}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: inequações

Mensagempor 0 kelvin » Qua Nov 03, 2010 23:00

A resolução não poderia seguir assim?

\frac{2x - 1 - x + 3}{x + 1} < 0

\frac{x + 2}{x + 1} < 0

x < -2 e x < -1

(tabela de sinais)
----- (-2) ++++++++++++ função crescente
------------ (-1) +++++++ função crescente

O intervalo então é -2 < x < -1. Ou, se a resolução for em sentido inverso, as duas funções passariam a ser decrescentes e a inequação passaria a ser f(x) / g(x) > 0.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: inequações

Mensagempor MarceloFantini » Qui Nov 04, 2010 10:31

A resolução de 0 Kelvin está certíssima, rápida e elegante. Excelente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?