por jose henrique » Ter Out 26, 2010 23:56
Resolva a inequação

. Dê a resposta em termos de intervalo.
é necessário que o denominador não seja nulo, então x > -1
no numerador fica assim:
2x-1<x-3
2x-x<-3+1
x<-2
S= {X e R / x > -1 ou x < -2 }
está correto a resolução e a resposta?
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por jose henrique » Qua Out 27, 2010 07:30
obrigado!
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por MarceloFantini » Qua Out 27, 2010 07:42
Peço desculpas, minha resolução está incorreta (parcialmente).
Primeiro,

pois não se define divisão por zero. Agora, precisamos analisar dois casos: quando

e quando

, ou seja,

e

.
Analisando o primeiro:
Quando

, multiplicando os dois lados da desigualdade por

nos leva a

. Portanto, o primeiro conjunto é

.
Segundo caso:
Quando

, multiplicando os dois lados da desigualdade por

nos leva a

. Como não existe nenhum número que satisfaça tal condição,

.
O conjunto solução geral é

.
Ou seja, a sua solução estava certa, José Henrique, mas faltava analisar caso a caso.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jose henrique » Qua Out 27, 2010 20:17
agradeço desde já, mas peço por favor que me explique a resolução de s2, pois fiz aqui e não consegui
multiplicando os dois lados da desigualdade encontramos após a resolução parcial

eu achei


tá errado?
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por MarceloFantini » Qua Out 27, 2010 20:39
Multiplicou os dois lados da desigualdade pelo o que? Multiplicando por

você elimina o denominador e o numerador permanece o mesmo, fique atento à esse detalhe.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jose henrique » Qua Out 27, 2010 21:12
beleza, obrigado!
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por jose henrique » Qua Nov 03, 2010 16:25
olá tive refazendo está questão aqui e achei outro valor e pude perceber que em algum momento vc inverteu os sinais de < e > resolvi desta forma.
no caso do denominador a solução tem que ser maior que 0
então,
x+1>0 = X>-1
no numerador fica assim
2x-1<x-3
2x-1-x+3<0
x+2<0
x<-2
como a inequação tem ser menor que 0, então fica assim:
S=

eu utilizei as retas e os sinais para cada inequacação.
Tá errado a minha resolução?
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por MarceloFantini » Qua Nov 03, 2010 17:16
Como é que eu consigo falar tanta besteira em uma postagem só...
José, voltando no meu post antigo, vou consertar as cagadas que fiz. É o PRIMEIRO caso que não existe: não existe número tal que

e

. Logo,

.
Já no segundo caso:

e

, levando à:

Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por 0 kelvin » Qua Nov 03, 2010 23:00
A resolução não poderia seguir assim?


x < -2 e x < -1
(tabela de sinais)
----- (-2) ++++++++++++ função crescente
------------ (-1) +++++++ função crescente
O intervalo então é -2 < x < -1. Ou, se a resolução for em sentido inverso, as duas funções passariam a ser decrescentes e a inequação passaria a ser f(x) / g(x) > 0.
-
0 kelvin
- Usuário Parceiro

-
- Mensagens: 78
- Registrado em: Dom Out 31, 2010 16:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias atmosfericas
- Andamento: cursando
por MarceloFantini » Qui Nov 04, 2010 10:31
A resolução de 0 Kelvin está certíssima, rápida e elegante. Excelente.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Inequações
por Bruno 888 » Qua Set 24, 2008 20:36
- 1 Respostas
- 4095 Exibições
- Última mensagem por admin

Ter Set 30, 2008 17:09
Inequações
-
- Inequações
por Rose » Seg Nov 24, 2008 22:44
- 2 Respostas
- 3595 Exibições
- Última mensagem por Rose

Qua Nov 26, 2008 08:18
Inequações
-
- Inequações
por cristina » Seg Set 07, 2009 01:46
- 2 Respostas
- 2802 Exibições
- Última mensagem por cristina

Seg Set 07, 2009 20:55
Sistemas de Equações
-
- Inequações
por brijahh » Sáb Ago 06, 2011 10:38
- 1 Respostas
- 2091 Exibições
- Última mensagem por MarceloFantini

Sáb Ago 06, 2011 17:00
Funções
-
- Inequações
por rhodry » Qui Nov 17, 2011 17:17
- 6 Respostas
- 3208 Exibições
- Última mensagem por rhodry

Qui Nov 17, 2011 20:30
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.