• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites envolvendo fatoriais

Limites envolvendo fatoriais

Mensagempor victoreis1 » Ter Out 26, 2010 16:45

Boa tarde.. há um tempo venho fazendo cálculos de limites, seja racionalizando, seja cancelando fatores comuns.. mas tem uns que não consigo resolver por tais métodos, como este:

\lim_{x -> 4} \frac {x! - 6x}{x-4}

visto que não tem como cancelar os termos..

Se alguém souber como resolvê-lo, fico grato em receber uma resposta (:
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites envolvendo fatoriais

Mensagempor Neperiano » Ter Out 26, 2010 17:51

Ola

Não tenho certeza mas se voce susbituir o x! por, x.x-1.x-2.x-3 e cortar o x-2 com o x-4 vai ficar só x-2 embaixo e assim vai da para responder

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Limites envolvendo fatoriais

Mensagempor victoreis1 » Ter Out 26, 2010 18:30

como exatamente cortar \frac {x-2}{x-4} ?

não dá pra fazer cortando, tem de ter outra maneira
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites envolvendo fatoriais

Mensagempor Neperiano » Qua Out 27, 2010 12:22

Ola

x.x-1.x-2.x-3.-6x
------------------------
x-4

Note que voce pode cortar o x e o 2 com o x e 0 4, ficando

x.x-1.x-3. - 6x
-----------------------
2 x-4

Substituindo o 4 vai ficar 12 - 24 emcima e embaixo 2 - 0, -12/2 = -6

Claro que não tenho certeza se pode fazer isso, mas se puder fica assim

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}