• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limite

limite

Mensagempor johnny » Seg Out 25, 2010 12:09

\lim_{x\rightarrow2}\frac{x-2}{{x}^{3}-8}= \frac{0}{0}= 0 mas o resutado da \frac{-1}{12} qual e o metodo que tenho de usar
johnny
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Out 22, 2010 15:14
Formação Escolar: GRADUAÇÃO
Área/Curso: engenhari de produção
Andamento: cursando

Re: limite

Mensagempor victoreis1 » Seg Out 25, 2010 14:00

0 divido por 0 não dá 0, é sim uma indeterminação!

veja que

x^3 - 8 = x^3 - 2^3 = (x-2)(x^2 + 2x + 4)

Então

\frac{x-2}{x^3 - 8} = \frac{x-2}{(x-2)(x^2 + 2x + 4)} = \frac{1}{x^2 + 2x + 4} ;

substituindo x por 2, temos que o limite dá 1/12.
victoreis1
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qua Out 20, 2010 14:49
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: limite

Mensagempor johnny » Seg Out 25, 2010 14:31

obrigado
johnny
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Out 22, 2010 15:14
Formação Escolar: GRADUAÇÃO
Área/Curso: engenhari de produção
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)