• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ITA) equaçoes logaritmica

(ITA) equaçoes logaritmica

Mensagempor natanskt » Qua Out 13, 2010 18:16

se a PERTENCE a R é tal que 3y^2-y+a=0tem raiz dupla,então a solução da equação:
a-)log_2{6}
b-)-log_2{6}
c-)log_3{6}
d-)-log_3{6}
e-)1-log_3{6}
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ITA) equaçoes logaritmica

Mensagempor natanskt » Sex Out 15, 2010 12:11

ajuda aí galera
abraços
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ITA) equaçoes logaritmica

Mensagempor MarceloFantini » Sex Out 15, 2010 17:25

Se tem raíz dupla, então \Delta = 0. Portanto:

\Delta = (-1)^2 -4 \cdot 3 \cdot a = 0 \rightarrow a = \frac{1}{12}

Reescrevendo a segunda equação:

3^{2x -1} - 3^x +a = 0

Multiplicando por 3, temos:

3^{2x} - 3^{x+1} +3a = 0

Fazendo a mudança de variável 3^x = t:

t^2 -3t + \frac{1}{4} = 0

Multiplicando tudo por 4:

4t^2 -12t +1 = 0

\Delta = (-12)^2 -4 \cdot 4 \cdot 1 = 144 - 16 = 128 = 2^7

t = \frac{- (-12) \pm \sqrt {2^7}}{8} = \frac{12 \pm 8 \sqrt{2}}{8} = \frac{3 \pm 2 \sqrt{2}}{2}

t_1 = \frac{3 + 2 \sqrt{2}}{2}

t_2 = \frac{3 - 2 \sqrt{2}}{2}

Então:

3^x = \frac{3 + 2 \sqrt{2}}{2}

Ou

3^x = \frac{3 - 2 \sqrt{2}}{2}

Existem duas respostas. Avalie a partir daí.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}