• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ITA) equaçoes logaritmica

(ITA) equaçoes logaritmica

Mensagempor natanskt » Qua Out 13, 2010 18:16

se a PERTENCE a R é tal que 3y^2-y+a=0tem raiz dupla,então a solução da equação:
a-)log_2{6}
b-)-log_2{6}
c-)log_3{6}
d-)-log_3{6}
e-)1-log_3{6}
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ITA) equaçoes logaritmica

Mensagempor natanskt » Sex Out 15, 2010 12:11

ajuda aí galera
abraços
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ITA) equaçoes logaritmica

Mensagempor MarceloFantini » Sex Out 15, 2010 17:25

Se tem raíz dupla, então \Delta = 0. Portanto:

\Delta = (-1)^2 -4 \cdot 3 \cdot a = 0 \rightarrow a = \frac{1}{12}

Reescrevendo a segunda equação:

3^{2x -1} - 3^x +a = 0

Multiplicando por 3, temos:

3^{2x} - 3^{x+1} +3a = 0

Fazendo a mudança de variável 3^x = t:

t^2 -3t + \frac{1}{4} = 0

Multiplicando tudo por 4:

4t^2 -12t +1 = 0

\Delta = (-12)^2 -4 \cdot 4 \cdot 1 = 144 - 16 = 128 = 2^7

t = \frac{- (-12) \pm \sqrt {2^7}}{8} = \frac{12 \pm 8 \sqrt{2}}{8} = \frac{3 \pm 2 \sqrt{2}}{2}

t_1 = \frac{3 + 2 \sqrt{2}}{2}

t_2 = \frac{3 - 2 \sqrt{2}}{2}

Então:

3^x = \frac{3 + 2 \sqrt{2}}{2}

Ou

3^x = \frac{3 - 2 \sqrt{2}}{2}

Existem duas respostas. Avalie a partir daí.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: