• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ESPCEX) Equação logaritmica

(ESPCEX) Equação logaritmica

Mensagempor natanskt » Seg Out 11, 2010 16:23

1-)(ESPCEX) sendo y=2^{log_6{5} . log_2{6}} o valor de y é
a-)2
b-)5
c-)6
d-)12
e-)30
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) Equação logaritmica

Mensagempor MarceloFantini » Seg Out 11, 2010 16:57

y= 2^{\log_6 5 \cdot \log_2 6}

Pela propriedade da mudança de base, temos: \log_6 5 = \frac{\log_2 5}{\log_2 6}. Portanto:

y = 2^{\log_6 4 \cdot \log_2 6} = 2^{\frac{\log_2 5}{\log_2 6} \cdot \log_2 6} = 2^{\log_2 5}

Pela propriedade que diz que a^{\log_a b} = b, resulta em:

y = 2^{\log_2 5} = 5

Alternativa B.

Natanskt, já percebi que você posta muitas questões com o mesmo método de resolução, praticamente todas apenas cobram o uso de propriedades. Você precisa estudar as respostas dadas aqui no fórum e REFAZÊ-LAS sozinho para aprender de verdade, e tentar fazer antes de tudo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (ESPCEX) Equação logaritmica

Mensagempor natanskt » Seg Out 11, 2010 17:16

ta bom!!
é que eu tento fazer,e não consigo...
estou com muita dificuldade em aprender essa matéria,se eu tivesse um professor estaria melhor,é que eu to tentando aprender sozinho
depois que eu vejo a resposta eu aprendo,mais quando tem outra questão eu fico perdido dinovo,

valeu !!!!
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (ESPCEX) Equação logaritmica

Mensagempor DanielRJ » Seg Out 11, 2010 18:39

natanskt escreveu:ta bom!!
é que eu tento fazer,e não consigo...
estou com muita dificuldade em aprender essa matéria,se eu tivesse um professor estaria melhor,é que eu to tentando aprender sozinho
depois que eu vejo a resposta eu aprendo,mais quando tem outra questão eu fico perdido dinovo,

valeu !!!!


Vai no youtube. e procura por "aulasdematematica" entra nesse canal. tem um professor que ele ensina perfeitamente essa materia boa sorte.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}