• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(AMAN) Equação logaritmica

(AMAN) Equação logaritmica

Mensagempor natanskt » Seg Out 11, 2010 16:20

(AMAN)se log_3{4}=a e log_4{5}=b,então o valor de log_3{5}em função de a e b é:
a-)1/a+b
b-)b/a
c-)1/a.b
d-)a/b
e-)a . b
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (AMAN) Equação logaritmica

Mensagempor MarceloFantini » Seg Out 11, 2010 17:03

Queremos \log_3 5 sabendo que \log_3 4 = a e \log_4 5 = b. Pela propriedade da mudança de base temos que:

\log_3 5 = \frac{\log_4 5}{\log_4 3} = \frac{b}{\log_4 3}

Falta encontrar \log_4 3. Vamos aplicar a mesma propriedade em \log_3 4:

\log_3 4 = \frac{\log_4 4}{\log_4 3} = \frac{1}{\log_4 3} = a \rightarrow \log_4 3 = \frac{1}{a}

Note que eu posso fazer isso pois \log_3 4 = a > 0 (verifique). Agora, basta substituir:

\log_3 5 = \frac{b}{\log_4 3} = \frac{b}{\frac{1}{a}} = a \cdot b

Alternativa E.

Natanskt, veja o meu conselho no outro tópico.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: (AMAN) Equação logaritmica

Mensagempor natanskt » Seg Out 11, 2010 17:13

ta bom
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}