• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equaçoes exponenciais

equaçoes exponenciais

Mensagempor natanskt » Qui Out 07, 2010 13:58

22-)(EPCAR) a solução real da equação 3^x+\frac{15}{3^{x-1}}+3^{x-3}}-\frac{23}{3^{x-2}}=0

tentei resolver,mais eu nem conseguir começar,não tenho professor ta sendo dificil pra mim
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: equaçoes exponenciais

Mensagempor DanielRJ » Qui Out 07, 2010 14:37

natanskt escreveu:22-)(EPCAR) a solução real da equação 3^x+\frac{15}{3^{x-1}}+3^{x-3}}-\frac{23}{3^{x-2}}=0

tentei resolver,mais eu nem conseguir começar,não tenho professor ta sendo dificil pra mim



3^x+\frac{15}{3^{x-1}}+3^{x-3}}-\frac{23}{3^{x-2}}=0

3^x+\frac{15}{3^x.3^{-1}}+3^x.3^{-3}}-\frac{23}{3^x.3^{-2}}=0 Considere 3^x = k

k+\frac{15}{k.3^{-1}}+k.3^{-3}}-\frac{23}{k.3^{-2}}=0


k+\frac{15}{\frac{k}{3}}+\frac{k}{27}}-\frac{23}{\frac{k}{9}}=0

k+\frac{15}{1}.\frac{3}{k}+\frac{k}{27}-\frac{23}{1}.\frac{9}{k}=0

k+\frac{45}{k}+\frac{k}{27}-\frac{207}{k}=0 pratica o m.m.c

28k^2-4374=0 eu accho isso e não consigo sair daqui , talvez errei snal
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: equaçoes exponenciais

Mensagempor DanielRJ » Qui Out 07, 2010 14:39

danielcdd escreveu:
natanskt escreveu:22-)(EPCAR) a solução real da equação 3^x+\frac{15}{3^{x-1}}+3^{x-3}}-\frac{23}{3^{x-2}}=0

tentei resolver,mais eu nem conseguir começar,não tenho professor ta sendo dificil pra mim



3^x+\frac{15}{3^{x-1}}+3^{x-3}}-\frac{23}{3^{x-2}}=0

3^x+\frac{15}{3^x.3^{-1}}+3^x.3^{-3}}-\frac{23}{3^x.3^{-2}}=0 Considere 3^x = k

k+\frac{15}{k.3^{-1}}+k.3^{-3}}-\frac{23}{k.3^{-2}}=0


k+\frac{15}{\frac{k}{3}}+\frac{k}{27}}-\frac{23}{\frac{k}{9}}=0

k+\frac{15}{1}.\frac{3}{k}+\frac{k}{27}-\frac{23}{1}.\frac{9}{k}=0

k+\frac{45}{k}+\frac{k}{27}-\frac{207}{k}=0 pratica o m.m.c

28k^2-4374=0 eu accho isso e não consigo sair daqui , talvez errei snal o 28 deveria ser 27 ai ia dar certin.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: equaçoes exponenciais

Mensagempor Elcioschin » Qui Out 07, 2010 14:50

Tens certeza do enunciado? Favor conferir todos números.
Tens o gabarito? Poste, por favor.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: equaçoes exponenciais

Mensagempor MarceloFantini » Qui Out 07, 2010 15:31

Eu endosso o Elcio, confira os números e se tiver o gabarito coloque-o.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: equaçoes exponenciais

Mensagempor natanskt » Qui Out 07, 2010 16:39

desculpem pessoal é que eu apertei pra enviar antes de eu acabar a questão,confundi o enviar com o prever
22-)(EPCAR) a solução real da equação 3^x+\frac{15}{3^{x-1}}+3^{x-3}}-\frac{23}{3^{x-2}}=0 é um numero racional irretutivel escretivo na forma a/b,então a+b vale:
a-)2
b-)4
c-)7
d-)8

a conta está igual a daqui,a alternativa correta é a C
valeu!
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: equaçoes exponenciais

Mensagempor MarceloFantini » Qui Out 07, 2010 17:43

Não existem soluções racionais para esse problema, basta aplicar raíz quadrada e verá que sobra um número irracional. Que estranho...
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: