por Colton » Sáb Out 02, 2010 20:22
+
+
Olá
Estou me debatendo já há mais de uma hora com a seguinte questão:
Calcule detQ, sabendo que Q é uma matriz 4 x 4 tal que detQ diferente de zero e Q^3+2Q^2 = 0.
Só consegui descobrir que se detQ = x, detQ^2 = x^2. detQ^3 = x^3...mas não consigo relacionar isto com a soma do cubo da matriz com o dobro do quadrado da matriz...
Há alguém aí que pode me dar uma orientação?
A resposta do livro é detQ = 16
Colton
+
+
-
Colton
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Jul 25, 2010 17:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por Elcioschin » Seg Out 04, 2010 13:09
Vou tentar:
Q³ + 2*Q² = 0
(Q + 2)*Q² = 0
Como Q >< 0 -----> Q + 2 = 0 ----> Q = -2
Como a matriz é de ordem 4 ----> detQ = (-2)^4 -----> detQ = 16
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Colton » Seg Out 04, 2010 17:21
+
+
Obrigado Elcioschin!
Às vezes o óbvio está aí e a gente não vê...
Abraços
Colton
+
+
-
Colton
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Jul 25, 2010 17:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por Colton » Seg Out 04, 2010 17:40
+
+
Olá Elcioschin... óia nóis aqui 'traveis!
Na verdade, eu também tinha chegado à conclusão que Q = -2...
O que eu não consegui visualisar é o significado disto, isto é o que quer dizer Q = -2 ???
É certo que elevando isto à quarta temos 16, mas aonde estamos pisando?
Abraço
Colton
+
+
-
Colton
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Jul 25, 2010 17:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por MarceloFantini » Seg Out 04, 2010 18:45
Acredito que a maneira seja essa:

Pelas propriedades

, onde

é o tamanho da matriz, e

, temos:

.
Como

, podemos dividir por

, finalizando:

Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Colton » Seg Out 04, 2010 19:59
+
+
Olá Fantini
Eu acho que agora está certo.
Obrigado...é que estas propriedades (especialmente det(A^n) = det^n(A)) não consta do livro que eu venho estudando.
A outra propriedade consta, porém de maneira implícita...
Muito grato,
Abraço
Colton
+
+
-
Colton
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Jul 25, 2010 17:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por MarceloFantini » Seg Out 04, 2010 20:23
A propriedade

é uma consequência direta da propriedade

. Veja:

Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Colton » Qua Out 06, 2010 11:31
+
+
Olá Fantini,
Tomarei boa nota deste desenvolvimento. Grato.
Colton
+
+
-
Colton
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Dom Jul 25, 2010 17:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Matrizes invertíveis] e matrizes inversas
por JacquesPhilippe » Seg Ago 08, 2011 19:19
- 3 Respostas
- 4970 Exibições
- Última mensagem por LuizAquino

Qui Ago 11, 2011 19:43
Matrizes e Determinantes
-
- [Matrizes] produto de matrizes
por vanessafey » Dom Ago 28, 2011 16:54
- 1 Respostas
- 3479 Exibições
- Última mensagem por MarceloFantini

Dom Ago 28, 2011 17:35
Matrizes e Determinantes
-
- [MATRIZES] Demonstração de matrizes
por farinha99 » Sáb Set 03, 2016 11:56
- 0 Respostas
- 5888 Exibições
- Última mensagem por farinha99

Sáb Set 03, 2016 11:56
Matrizes e Determinantes
-
- matrizes
por luix henrique » Seg Out 13, 2008 15:42
- 1 Respostas
- 9576 Exibições
- Última mensagem por Molina

Seg Out 13, 2008 20:13
Matrizes e Determinantes
-
- Matrizes
por Giles » Qua Out 29, 2008 23:24
- 7 Respostas
- 12570 Exibições
- Última mensagem por Molina

Sex Nov 14, 2008 01:24
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.