por rafaelcb » Qui Set 30, 2010 13:05
Bom Dia,
Meu nome é Rafael, e eu não estou conseguindo resolver esse exercício de Geometria, se alguem puder me ajudar eu ficaria muito grato.
Muito Obrigado pela atenção e paciência
(Mack 98) Na figura a seguir, os arcos QMP e MTQ medem, respectivamente, 170° e 130°. Então, o arco MSN mede:
a) 60ºb) 70º
c) 80º
d) 100º
e) 110º

- Mack 98.JPG (7.73 KiB) Exibido 4679 vezes
-
rafaelcb
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Set 30, 2010 12:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Psicologia
- Andamento: formado
por Douglasm » Qui Set 30, 2010 18:20
Na verdade tudo de que precisa é uma construção conveniente. Como já é bastante claro o desenho, só vou indicar os ângulos:
Preto: 65º
Azul: 85º
Verde: 30º (resposta)
Rosa: 95º
Note que o ângulo que descreve um arco na borda da circunferência, vale metade do ângulo que descreve o mesmo arco a partir do centro. Logo, o arco MSN vale 60º. Eis o desenho:

- geomcirc.JPG (11.21 KiB) Exibido 4666 vezes
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por rafaelcb » Sex Out 01, 2010 03:17
Douglasm,
Muito OBRIGADO pela sua ajuda, sou muito agradecido
Abraço
Rafael
-
rafaelcb
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Set 30, 2010 12:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Psicologia
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (MACK) Em [0, 2?], se...
por manuoliveira » Ter Jun 01, 2010 21:02
- 2 Respostas
- 2606 Exibições
- Última mensagem por Mathmatematica

Dom Jun 06, 2010 21:22
Binômio de Newton
-
- Mack-SP
por -Sarah- » Sáb Fev 23, 2013 18:56
- 4 Respostas
- 2814 Exibições
- Última mensagem por -Sarah-

Ter Fev 26, 2013 20:20
Funções
-
- mack
por fna » Qua Jun 12, 2013 08:53
- 0 Respostas
- 885 Exibições
- Última mensagem por fna

Qua Jun 12, 2013 08:53
Geometria Plana
-
- Questão MACK-SP
por Diego Math » Qui Set 13, 2012 19:11
- 2 Respostas
- 8465 Exibições
- Última mensagem por Nina Luizet

Sáb Jun 13, 2015 16:02
Geometria Plana
-
- (MACK-SP) Função do 1º Grau
por 13run0 » Qui Mai 27, 2010 17:54
- 4 Respostas
- 2800 Exibições
- Última mensagem por 13run0

Sex Mai 28, 2010 14:15
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.