• Anúncio Global
    Respostas
    Exibições
    Última mensagem

dominio da expressão

dominio da expressão

Mensagempor jose henrique » Sáb Set 18, 2010 20:55

Tenho uma questão que pediu para determinar o dominio de cada expressão, isto é, o conjunto de todos os valores reais de x onde podemos calcular cada expressão abaixo:

A)y= \sqrt[]{2-x}

B)y=\sqrt[3]{{x}^{2}-1}


eu não sei nem por onde começar
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: dominio da expressão

Mensagempor DanielRJ » Sáb Set 18, 2010 21:17

Olá amigo vamos lá:

A) \sqrt {2-x} para que essa função tenha dominio basta que a expressão seja > 0 ou sejá só pode assumir valores positivo. pois é uma raiz quadrada e raiz de numero negativo não existe. logo.
2-x>0
-x>-2 quando se multiplica por -1 inverte a posição.
x<2

B) \sqrt[3]{x^2-1} já essa expressão nada impede , pois é raiz cúbica, logo serve numeros positivos e negativos. X\varepsilon R

Não sei se escrevi merda.. mas algum professor irá aparece e explica-lo melhor! Só tem um detalhe que fiquei curioso ai no seu perfil ta GRADUADO EM MATEMATICA e voce não sabe isto?
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: dominio da expressão

Mensagempor MarceloFantini » Seg Set 20, 2010 03:15

Está certo, apenas uma correção: na primeira, é não-negativa, o que significa que também pode ser zero. Portanto, a resposta é x \leq 2, não apenas x<2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: dominio da expressão

Mensagempor DanielRJ » Seg Set 20, 2010 13:30

Fantini escreveu:Está certo, apenas uma correção: na primeira, é não-negativa, o que significa que também pode ser zero. Portanto, a resposta é x \leq 2, não apenas x<2.



Obrigado Fantini tinha esquecido desse detalhe. :y:
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.