• Anúncio Global
    Respostas
    Exibições
    Última mensagem

LIMITES

LIMITES

Mensagempor Arlan » Sex Set 10, 2010 14:42

Estou cursando o segundo período de Engenharia Civil e pagando a disciplina Cálculo I. Estou resolvendo as questões do Livro "O Cálculo com Geometria Analítica" de Louis Leithold.

Estou encontrando dificuldades na solução desta questão...

\lim_{h\rightarrow 0} \frac{\sqrt[3]{h+1}-1}{h}

Adotei as seguintes estratégias de resolução:

( i ) coloquei o -1 do numerador dentro da raíz cúbica
(ii) somei 1 e subtrai -1 ao denominador (h+1)-1

\lim_{h\rightarrow0}\frac{\sqrt[3]{h + 1} - \sqrt[3]{1}}\left(\sqrt[3]{h + 1}\right){}^{3} - \left(\sqrt[3]{1} \right){}^{3}
Arlan
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Set 09, 2010 21:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelando em Engenharia
Andamento: cursando

Re: LIMITES

Mensagempor Marcampucio » Sex Set 10, 2010 16:12

h+1=x^3\,\,\to\,\,h=x^3-1


\\\lim_{h\to0}\frac{\sqrt[3]{h+1}-1}{h}=\lim_{x\to1}\frac{x-1}{x^3-1} =\lim_{x\to1}\frac{x-1}{(x-1)(x^2+1+x)}\\\\\\\lim_{x\to1}\frac{1}{x^2+1+x} =\frac{1}{3}
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.