• Anúncio Global
    Respostas
    Exibições
    Última mensagem

O valor da expressão

O valor da expressão

Mensagempor cristina » Qua Set 08, 2010 16:54

Boa tarde, eu não estou conseguindo resolver esta expressão, qual esta sendo o meu erro....

O valor da expressão

y=i-i+i+i-1+1-1
y= 2i-1

So que as alternativas são:
a) -1
b) i
c) -i
d) 1
e) 1+ i

Onde esta meu erro?
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando

Re: O valor da expressão

Mensagempor MarceloFantini » Qua Set 08, 2010 19:44

Note que i^n é cíclico, de modo que i + i^2 + i^3 + i^4 = 0. Vamos ver quantos ciclos tem analisando o resto da divisão inteira de 1001 por 4: 1001 = 4 \cdot 250 + 1. Portanto, existem 250 zeros e sobra um i, alternativa B.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: O valor da expressão

Mensagempor cristina » Qui Set 09, 2010 00:08

Fantini, muitissimo obrigada, jamais eu conseguiria chegar a este resultado sem sua ajuda...
cristina
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 82
Registrado em: Qua Set 02, 2009 17:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura/ matematica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}