• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema com 15 equações e 15 incógnitas

Sistema com 15 equações e 15 incógnitas

Mensagempor Bruhh » Seg Set 06, 2010 16:02

Olá, Boa Tarde a todos!!

Estou resolvendo um trabalho de álgebra linear, no qual tenho que calcular a temperatura de uma placa, que está exposta a diferentes temperaturas, em diversas regiões. Montando o sistema de equações para encontrar essas temperaturas, obtive um sistema com quinze equações e com quinze incógnitas diferentes.
Tenho que resolve-lo através do escalonamento, mas não consigo de jeito nenhum. Tentei somar as mais diferentes equações para encontrar o valor de uma letra mas não deu certo. Cada vez que tento escalonar uma equação aparecem mais e mais letras o que torna ainda mais complicado o sistema. Abaixo esta o sistema em questão:

4a-b=90
-a+4b-c-d=120
-b+4c-e=140
-b+4d-e-g=130
-c-d+4e-f-h=0
-e+4f-i=120
-d+4g-h-l=140
-e-g+4h-i-m=0
-f-h+4i-j-n=0
-i+4j-k=120
-g+4l-m=260
-h-l+4m-n=90
-i-m+4n-k=80
-j-n+4k-p=80
-d+4p=80

(a=44,180); (b=86,723); (c=78,388); (d= 104,326); (e=86,828); (f=71,173); (g=113,750); (h=93,424); (i=77,865); (j=66,525); (l=117,251); (m=95,253); (n=80,339); (k=68,236); (p=46,081);

Obtive os resultados resolvendo esse sistema no excel mas preciso mostrar a resolução através do escalonamento. Por qual equação começo? Qual somo? Por favor, alguém me ajuda a resolver o sistema?

Muito Obrigada
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Sistema com 15 equações e 15 incógnitas

Mensagempor Douglasm » Seg Set 06, 2010 18:37

Olá Bruhh. Isso vai dar um pouco de trabalho, mas montando a matriz e escalonando segundo o método cujo link segue abaixo, não tem erro.

http://rpanta.com/downloads/material/Gauss_01.PDF
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Sistema com 15 equações e 15 incógnitas

Mensagempor Bruhh » Qua Set 08, 2010 22:32

Obrigada mas não consegui entender muito bem. Por favor você poderia me ajuda a escalonar o sistema para eu poder achar pelo menos o valor de uma incgónita??? Por faaaavor, já estou ficando desesperada com esse sistema ;( ;(
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Sistema com 15 equações e 15 incógnitas

Mensagempor MarceloFantini » Qui Set 09, 2010 14:56

Basicamente, você tem que formar uma matriz onde os elementos da primeira coluna são zeros menos o primeiro, todos os elementos da segunda coluna são zeros menos o segundo, etc. No seu caso, por exemplo, somente a segunda linha tem a, você zera ele e não mexe mais na primeira equação com as demais.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59