• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[divisão] Ajuda, plz!

[divisão] Ajuda, plz!

Mensagempor Roberta » Ter Jun 24, 2008 13:25

olá... É mto comum encontrar exercícios deste tipo... onde há uma divisão e eu sempre me embaralho e nunca sei por onde começar ou que informações tomar por referência...

Será que vcx podiam me indicar uma forma de resolução prática e simples que eu pudesse aplicar p/ este tipo de questão? Sou difícil de entender mat. :-( sem complexidades, plzzz :?

Sem mais delongas.... aí vai a questão...

O diretor de uma instituição bancária resolveu premiar seus gerentes regionais com a quantia de R$ 36.000,00 em partes iguais. Marcou o dia da distribuição e escreveu no e-mail desse comunicado que, se alguém não comparecesse no dia marcado
o montante seria distribuído entre os presentes, não havendo outra oportunidade. No dia da distribuição, faltaram 3 gerentes e, desse modo, os que compareceram foram beneficiados com R$ 1.000,00 a mais cada um. O total de gerentes regionais dessa instituição bancária é igual a:

a) 5 / b) 6 / c) 7 / d) 8 / e) 12

Obrigada!
Roberta.gmail
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando

Re: [divisão] Ajuda, plz!

Mensagempor Molina » Ter Jun 24, 2008 14:31

Roberta escreveu:O diretor de uma instituição bancária resolveu premiar seus gerentes regionais com a quantia de R$ 36.000,00 em partes iguais. Marcou o dia da distribuição e escreveu no e-mail desse comunicado que, se alguém não comparecesse no dia marcado
o montante seria distribuído entre os presentes, não havendo outra oportunidade. No dia da distribuição, faltaram 3 gerentes e, desse modo, os que compareceram foram beneficiados com R$ 1.000,00 a mais cada um. O total de gerentes regionais dessa instituição bancária é igual a:

a) 5 / b) 6 / c) 7 / d) 8 / e) 12

Obrigada!
Roberta.gmail


Depois de muito pensar sobre essa questao (pois tambem tenho dúvidas), cheguei a esse raciocínio:
Considera:
X = Pessoas
X - 3 = Pessoas que fora
Y = Valor
Y + 1000 = Valor recebido

Fazemos o seguinte sistema:
\frac{36000}{X}=Y\Rightarrow36000=YX
e
\frac{36000}{X-3}=Y+1000\Rightarrow36000=(Y+1000).(X-3)
resolvendo esta equação, como XY = 3600 eles se cancelam e chegamos em uma equação com 2 variaveis, mas como temos da primeira parte do sistema que \frac{36000}{X}=Y substituimos e deixamos apenas em função de X a equação, que torna-se de 2° grau. Resolvendo, chegamos em um valor positivo e um negativo. Como X é o número de gerentes (ou seja, nao pode ser negativo) consideramos apenas o valor positivo, que é igual a 12.

X = Pessoas => 12
X - 3 = Pessoas que fora => 12 - 3 = 9
Y = Valor => 3000
Y + 1000 = Valor recebido => 3000 + 1000 = 4000

;)

Espero que tenha ajudado, e nao atrapalhado.
Pq tambem nao vejo esse exercício de uma forma tao simples quanto parece.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: [divisão] Ajuda, plz!

Mensagempor Roberta » Ter Jun 24, 2008 14:45

Valeu molina! foi super!!

Puxa... se vc achou difícil....rs :o
obrigada!!
Roberta.gmail :-)
Roberta
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 56
Registrado em: Qui Jun 19, 2008 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: estudante de direito
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?