• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Expressão com raiz quadrada

Expressão com raiz quadrada

Mensagempor jose henrique » Dom Ago 15, 2010 15:08

A expressão :
\sqrt[]{10+\sqrt[]{10}}X \sqrt[]{10-\sqrt[]{10}}
=\sqrt[]{10}+\sqrt[4]{10}X \sqrt[]{10}- \sqrt[4]{10}
=?


partir é que pintou a dúvida da resolução
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: Expressão com raiz quadrada

Mensagempor alexandre32100 » Dom Ago 15, 2010 20:57

José, \sqrt[]{10+\sqrt[]{10}}\times \sqrt[]{10-\sqrt[]{10}}\not=\sqrt[]{10}+\sqrt[4]{10}\times \sqrt[]{10}- \sqrt[4]{10} e isto pode ser visto, sei lá, com uma calculadora, se quiser (usei o Google, também dá :-D )
Mas, o que eu quero dizer é que você não pode dizer que \sqrt{10\pm\sqrt{10}}=\sqrt{10}\pm\sqrt[4]{10}. Isto só pode ser feito se você tiver, no lugar da adição (ou subtração), uma multiplicação, pois dai sim pode usar as propriedades das potências (afinal, a raiz não é mais do que uma potência fracionária). Por exemplo:
\sqrt{10\cdot\sqrt{10}}=(10\cdot10^{\frac{1}{2}})^{\frac{1}{2}}=10^{\frac{1}{2}}\cdot10^{\frac{1}{4}}=\sqrt{10}\cdot\sqrt[4]{10}.
Para resolver este problema, você deve usar uma das propriedades dos "Produtos Notáveis" que diz que (a+b)(a-b)=a^2-b^2, assim:
\sqrt[]{10+\sqrt[]{10}}\times \sqrt[]{10-\sqrt[]{10}}=\sqrt{(10+\sqrt{10})(10-\sqrt{10})}}
\sqrt{100-10}=\sqrt{90}=3\sqrt{2\cdot5}=3\sqrt{10} (observe que 90=2\cdot3^2\cdot5).
alexandre32100
 

Re: Expressão com raiz quadrada

Mensagempor jose henrique » Seg Ago 16, 2010 10:33

obrigado!
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)