• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Otimização de derivadas

Otimização de derivadas

Mensagempor bilsilva » Sáb Ago 14, 2010 17:52

Não consigo resolver esse problema:
"Qual é o retângulo máximo inscrito num circulo de raio 12 cm ? "
bilsilva
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Ago 14, 2010 17:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Otimização de derivadas

Mensagempor Douglasm » Dom Ago 15, 2010 22:35

O que queremos maximizar é a área "S", dada por:

S = a.b

Para podermos verificar o ponto de máximo, devemos primeiro escrever "S" em função de uma variável (nesse caso escolherei "a"). É fácil observar a seguinte relação na circunferência:

\left(\frac{a}{2}\right)^2 + \left(\frac{b}{2}\right)^2 = 12^2 \;\therefore

b = \sqrt{576 - a^2}

Substituindo em "S":

S = a.\sqrt{576 - a^2}

O que temos que fazer agora é encontrar a primeira derivada desta função e igualá-la a zero (posteriormente, a segunda derivada garantirá de que se trata de um ponto de máximo, mas vou omití-la aqui). Logo:

S' = \frac{576 - 2a^2}{\sqrt{576 - a^2}}

Igualando a zero:

\frac{576 - 2a^2}{\sqrt{576 - a^2}} = 0 \;\therefore

a = \sqrt{288}

Finalmente, substituindo na relação existente na circunferência, encontramos:

\left(\frac{\sqrt{288}}{2}\right)^2 + \left(\frac{b}{2}\right)^2 = 12^2 \;\therefore

b = \sqrt{288} = a

Concluímos que o retângulo com a máxima área a ser inscrito numa circunferência de raio 12 cm é um quadrado de lado \sqrt{288} cm.

Obs: Resolvi omitir também o desenvolvimento dos cálculos mas caso haja alguma dúvida nesse sentido é só dizer.

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)