• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de funções - uso de infinito

Cálculo de funções - uso de infinito

Mensagempor gutorocher » Qui Ago 05, 2010 19:21

Em quantos meses o número de acessos atinge ou ultrapassa a 200 acessos e para qual valor tende a quantidade de acessos quando t tende ao infinito ?

a. 1,5 mes e 400 acessos
b. 1,5 mes e 4000 acessos
c. 4 meses e 4000 acessos
d. 4 meses e 400 acessos
e. 4 meses e 40000 acessos

Resolução porem não descoberto quando tende ao infinito

13.5/14.25 = 0.94*100=94.73

76/38 = 2*100 = 200

aqui descobrir que são 4 meses para ter 200 acessos

como fazer a resolução para descobrir quando tende ao infinito conforme mostra o enunciado ?

aguardo ajuda ..

desde já agradeço
Avatar do usuário
gutorocher
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jul 21, 2010 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: CCP
Andamento: formado

Re: Cálculo de funções - uso de infinito

Mensagempor MarceloFantini » Qui Ago 05, 2010 19:27

Poste a questão inteira.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Cálculo de funções - uso de infinito

Mensagempor gutorocher » Qui Ago 05, 2010 20:59

ops esqueci colocar a função

segue abaixo a função:


f(t)=\frac{4t^{2}+3t}{t^2 +4t +6}X100
Avatar do usuário
gutorocher
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jul 21, 2010 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: CCP
Andamento: formado

Re: Cálculo de funções - uso de infinito

Mensagempor Molina » Qui Ago 05, 2010 22:13

Boa noite.

Para a segunda parte da questão você precisa ter aprendido (ou estar aprendendo) limites de funções.

Basta resolver o limite abaixo para ver a qual valor a função tende quando t cresce infinitamente:

\lim_{t\rightarrow \infty}\frac{4t^{2}+3t}{t^2 +4t +6}*100

Minha resposta deu 400. Tente chegar nela você também.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Cálculo de funções - uso de infinito

Mensagempor gutorocher » Qua Ago 11, 2010 16:39

resolução da atividade olha abaixo:
Anexos
Foto0015.jpg
Avatar do usuário
gutorocher
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Qua Jul 21, 2010 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: CCP
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}