• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Propriedade das somas dos antecedentes e dos cons...

Propriedade das somas dos antecedentes e dos cons...

Mensagempor my2009 » Qui Ago 05, 2010 12:38

Olá pessoal, tudo bem ? Depois de algum tempo de férias estou de volta = ] .

UMA EMPRESA IRÁ DIVIDIR R$ 24.000,00 ENTRE 4 FUNCIONARIOS DE FORMA DIRETAMENTE PROPORCIONAL AO TEMPO DE TRABALAHO NA EMPRESA E INVERSAMENTE PROPORCIONAL AO NÚMERO DE FALTAS MAIS UM.QUANTO COUBE AO FUNCIONÁRIO MAIS ANTIGO,SABENDO QUE MARCOS TRABALHA HÁ 6 ANOS NA EMPRESA E FALTOU 2 VEZES,AURÉLIO TRABALHA 2 ANOS E NUNCA FALTOU,JOEL TRABALHA HÁ 12 ANOS E FALTOU 3 VEZES E DANIEL TRABALHA HÁ 10 ANOS E FALTOU APENAS UMA VEZ ?

eu resolvi esse problema da seguinte forma :

M + A+ J+ D = 24.000
\frac{M}{6.1/3} + \frac{A}{2.1}+\frac{J}{12.1/4}+\frac{D}{10.1/2} --- >

\frac{M}{2}+\frac{A}{2}+\frac{J}{3}+\frac{D}{5}= \frac{24000}{12}= 2000

\frac{J}{3}= 2000

J = 2000.3

J = 6000

Existe outra forma para resolver esse problema ??? desde já agradeço xD
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Propriedade das somas dos antecedentes e dos cons...

Mensagempor my2009 » Sex Ago 06, 2010 14:00

Alguem pode me ajudar???
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Propriedade das somas dos antecedentes e dos cons...

Mensagempor my2009 » Seg Ago 09, 2010 19:28

Pessoal... preciso da resolução mas de outra forma, ninguem sabe ? *-)
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Propriedade das somas dos antecedentes e dos cons...

Mensagempor Cleyson007 » Sex Ago 20, 2010 13:39

Olá My, boa tarde!

A resolução que você apresentou está correta! Esse tipo de problema é resolvido dessa forma mesmo.

Valor de Marcos --> \frac{M}{6}(2+1)=2000 (Onde 6 corresponde ao tempo de serviço e 3 corresponde ao n° de faltas + 1)

Logo, M = R$ 4.000,00

Valor de Joel --> \frac{J}{12}(3+1)=2000

Logo, J = R$ 6.000,00 (Funcionário mais antigo)

Valor de Aurélio --> \frac{A}{2}(1)=2000

Logo, A = R$ 4.000,00

Valor de Daniel --> \frac{D}{10}(1+1)=2000

Logo, D = R$ 10.000,00

Espero ter ajudado!

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?