por EULER » Sáb Jul 31, 2010 22:59
Boa noite. É minha primeira vez no fórum. Estou tentando resolver uma questão que envolve VOLUME DO CONE, mais especificamente, uma ampulheta. É um exercício já antigo (de 2006, se não me engano). Ele pede para calcular o tempo em que a altura da areia no cone inferior seja metade da altura da areia no cone superior. Tentei calcular achando a diferença entre o volume total da areia da parte e o volume do cone menor, cuja altura é h/2, mas não consegui. Alguém pode me ajudar?
Desde já, agradeço.
-
EULER
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Jul 31, 2010 21:01
- Formação Escolar: GRADUAÇÃO
- Área/Curso: icenciatura em matemática
- Andamento: formado
por MarceloFantini » Seg Ago 02, 2010 02:48
Você tem o enunciado completo da questão?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por EULER » Ter Ago 03, 2010 14:08
Sim, Fantini. Segue:
'"Uma ampulheta é formada por dois cones idênticos. Inicialmente, o cone superior esté cheio de areia e o cone inferior está vazio. A areia flui do cone superior para o inferior com vazão constante. O cone superior se esvazia em exatamente uma hora e meia. Quanto tempo demora até que a altura da areia no cone inferior seja metade da altura da areia no cone superior?
Abraço.
-
EULER
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Jul 31, 2010 21:01
- Formação Escolar: GRADUAÇÃO
- Área/Curso: icenciatura em matemática
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [volume] Cone
por plugpc » Qui Jul 10, 2008 19:15
- 3 Respostas
- 5339 Exibições
- Última mensagem por admin

Sex Jul 11, 2008 03:42
Geometria Espacial
-
- Volume do Cone
por garciarafael » Seg Jul 18, 2011 22:00
- 3 Respostas
- 2937 Exibições
- Última mensagem por garciarafael

Seg Jul 18, 2011 23:52
Geometria Espacial
-
- Volume - Cone circular reto
por deividchou » Ter Ago 18, 2015 15:57
- 2 Respostas
- 5104 Exibições
- Última mensagem por deividchou

Qua Ago 19, 2015 10:31
Geometria Espacial
-
- [Geometria Espacial] Volume do tronco do cone
por jukkax » Sáb Out 19, 2013 21:32
- 1 Respostas
- 3565 Exibições
- Última mensagem por young_jedi

Dom Out 20, 2013 22:43
Geometria Espacial
-
- [Calculo de volumes] Dedução volume do cone
por ronaldo9nine » Qua Nov 20, 2013 10:31
- 1 Respostas
- 3639 Exibições
- Última mensagem por e8group

Qua Nov 20, 2013 20:06
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.