• Anúncio Global
    Respostas
    Exibições
    Última mensagem

VOLUME DO CONE

VOLUME DO CONE

Mensagempor EULER » Sáb Jul 31, 2010 22:59

Boa noite. É minha primeira vez no fórum. Estou tentando resolver uma questão que envolve VOLUME DO CONE, mais especificamente, uma ampulheta. É um exercício já antigo (de 2006, se não me engano). Ele pede para calcular o tempo em que a altura da areia no cone inferior seja metade da altura da areia no cone superior. Tentei calcular achando a diferença entre o volume total da areia da parte e o volume do cone menor, cuja altura é h/2, mas não consegui. Alguém pode me ajudar?
Desde já, agradeço.
EULER
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Jul 31, 2010 21:01
Formação Escolar: GRADUAÇÃO
Área/Curso: icenciatura em matemática
Andamento: formado

Re: VOLUME DO CONE

Mensagempor MarceloFantini » Seg Ago 02, 2010 02:48

Você tem o enunciado completo da questão?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: VOLUME DO CONE

Mensagempor EULER » Ter Ago 03, 2010 14:08

Sim, Fantini. Segue:
'"Uma ampulheta é formada por dois cones idênticos. Inicialmente, o cone superior esté cheio de areia e o cone inferior está vazio. A areia flui do cone superior para o inferior com vazão constante. O cone superior se esvazia em exatamente uma hora e meia. Quanto tempo demora até que a altura da areia no cone inferior seja metade da altura da areia no cone superior?

Abraço.
EULER
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Jul 31, 2010 21:01
Formação Escolar: GRADUAÇÃO
Área/Curso: icenciatura em matemática
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}