por Adriano Tavares » Qua Mar 09, 2011 00:36
Olá,Loreto.

Diferenciando ambos os membros em relação a

teremos:
![2sec(x+y).sec(x+y).tg(x+y).(1+y')-[2cos(x-y).(-sen(x-y).(1-y')]=0 2sec(x+y).sec(x+y).tg(x+y).(1+y')-[2cos(x-y).(-sen(x-y).(1-y')]=0](/latexrender/pictures/e5aa51c5d82d7b4621da77403f8a59f8.png)

Substituindo os valores de

e

teremos:

Calculando a reta tangente teremos:

-
Adriano Tavares
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Seg Mar 07, 2011 16:03
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnólogo em automação industrial
- Andamento: formado
por Adriano Tavares » Qua Mar 09, 2011 21:56
Olá,LuizAquino.
Creio que não há erro nessa primeira correção,isso porque eu já coloquei o valor direto do resultado da

que é igual a

.Note que no meu cálculo aperece o

e no seu apenas o valor do

.Quanto a segunda sim,pois, faltou atenção minha na hora de substituir o valor de

.Eu substitui o valor de

pelo

.
Um abraço!
-
Adriano Tavares
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Seg Mar 07, 2011 16:03
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnólogo em automação industrial
- Andamento: formado
por LuizAquino » Qua Mar 09, 2011 22:03
Olá Adriano Tavares,
Eu atualizei a mensagem removendo essa primeira "correção".
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivação Implicita
por xafabi » Qui Mai 02, 2013 13:56
- 0 Respostas
- 1208 Exibições
- Última mensagem por xafabi

Qui Mai 02, 2013 13:56
Cálculo: Limites, Derivadas e Integrais
-
- Derivação implicita.
por cardoed001 » Sáb Set 28, 2013 21:56
- 2 Respostas
- 2532 Exibições
- Última mensagem por cardoed001

Dom Set 29, 2013 12:28
Cálculo: Limites, Derivadas e Integrais
-
- Derivação Implicita
por victornakaya » Sáb Jun 28, 2014 20:03
- 0 Respostas
- 1100 Exibições
- Última mensagem por victornakaya

Sáb Jun 28, 2014 20:03
Cálculo: Limites, Derivadas e Integrais
-
- Derivação Implicita
por victornakaya » Sáb Jun 28, 2014 20:03
- 1 Respostas
- 1220 Exibições
- Última mensagem por young_jedi

Sáb Jul 05, 2014 16:05
Cálculo: Limites, Derivadas e Integrais
-
- Derivação implicita
por Carolminera » Dom Jul 06, 2014 23:07
- 1 Respostas
- 1213 Exibições
- Última mensagem por young_jedi

Seg Jul 07, 2014 20:07
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.