• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicio de Continuidade

Exercicio de Continuidade

Mensagempor PeIdInHu » Qua Jul 14, 2010 21:04

Alguem me ajuda com esse exercicio ......

Encontre p e q tais que g seja contínua e diferenciável em \Re.Justifique a sua resposta.
(Lembre que uma função f é diferenciável em Dom(f) se existe f'(x) para todo x \epsilon Dom(f).)

g(x)= 6x+1 ,se x<3 e
px²+qx ,se x\geq3
PeIdInHu
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 22, 2010 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Imformatica Biomedica
Andamento: cursando

Re: Exercicio de Continuidade

Mensagempor Tom » Qua Jul 14, 2010 23:09

Como as duas subfunções são polinomiais, então são contínuas e diferenciáveis. Devemos, portanto, apenas fazer que os limites laterais de g quando x\rightarrow 3 sejam iguais, já que x=3 é, por alto, abscissa do único possível ponto de descontinuidade.

De imediato já temos o limite quando x\rightarrow 3 pela esquerda:

\lim_{x\rightarrow 3^{-}} g(x)=(6x+1)=19 ; esse deve ser o limite quando x\rightarrow 3 pela direita, isto é:

p.3^2+q.3=19\rightarrow 9p+3q=19


Assim, o conjunto dos pares (p,q) que tornam a função diferenciável formam uma reta de equação 9p+3q=19
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Exercicio de Continuidade

Mensagempor PeIdInHu » Qui Jul 15, 2010 01:03

vlwsss =)
PeIdInHu
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 22, 2010 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Imformatica Biomedica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.