• Anúncio Global
    Respostas
    Exibições
    Última mensagem

P.a e p.g

P.a e p.g

Mensagempor Luiza » Ter Jul 13, 2010 12:09

Por favor , respondam esssas tres atividades ! OBRIGADA !


1 - se o termo geral d euma P.A é An = 5n-13 , com n \in N* , então a soma de seus 50 primeiros termos é :

2 - Numa PA de três termos tais que sua soma seja 24 e seu produto seja 440 , o primeiro termo pode ser :

3 - O numero de multiplos de 9 entre 105 e 1000 é :
Luiza
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Ter Nov 10, 2009 12:28
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: P.a e p.g

Mensagempor Tom » Ter Jul 13, 2010 12:46

1) Sabemos que numa p.a. o termo geral é dado por: a_n=a_1+(n-1)r
Conforme o enunciado, a_n=5n-13. Fazendo a identidade entre os polinômios, obtemos:

nr=5n\rightarrow r=5 e a_1-r=-13\rightarrow a_1=-8

Assim, a soma que queremos obter é :S_{50}=\dfrac{(a_1+a_{50})n}{2}=25(2a_1+49r)=25(-16+245)=5725


2) Sem perda de generalidade, diremos que os termos da sequência são: x-r,x,x+r onde r é a razão da progressão. Assim:

x-r+x+x+r=24\rightarrow x=8
x(x-r)(x+r)=440\rightarrow 8(8-r)(8+r)=440\rightarrow (8-r)(8+r)=55 \rightarrow r=\pm3.

Assim, se r=3 então o primeiro termo a_1=x-r=5 e se r=-3, então o primeiro termo será 11



3) Os múltiplos de nove formam uma p.a. de r=9. Devemos procurar o numero de termos da p.a. compreendidos no intervalo dado.

O primeiro múltiplo de nove, maior que 105 é 108, isto é, a_1=108=9.12
O último múltiplo de nove, menor que 1000 é 999, isto é, a_n=999=9.111

Decorre que:

a_n=a_1+(n-1)r\rightarrow 999=108+(n-1)9\rightarrow n-1=99\rightarrow n=100

Assim, existem 100 múltiplos.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: P.a e p.g

Mensagempor Luiza » Ter Jul 13, 2010 13:00

Nossa muito obrigada ! agora entendi !
Luiza
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Ter Nov 10, 2009 12:28
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.