• Anúncio Global
    Respostas
    Exibições
    Última mensagem

P.a e p.g

P.a e p.g

Mensagempor Luiza » Ter Jul 13, 2010 12:09

Por favor , respondam esssas tres atividades ! OBRIGADA !


1 - se o termo geral d euma P.A é An = 5n-13 , com n \in N* , então a soma de seus 50 primeiros termos é :

2 - Numa PA de três termos tais que sua soma seja 24 e seu produto seja 440 , o primeiro termo pode ser :

3 - O numero de multiplos de 9 entre 105 e 1000 é :
Luiza
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Ter Nov 10, 2009 12:28
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: P.a e p.g

Mensagempor Tom » Ter Jul 13, 2010 12:46

1) Sabemos que numa p.a. o termo geral é dado por: a_n=a_1+(n-1)r
Conforme o enunciado, a_n=5n-13. Fazendo a identidade entre os polinômios, obtemos:

nr=5n\rightarrow r=5 e a_1-r=-13\rightarrow a_1=-8

Assim, a soma que queremos obter é :S_{50}=\dfrac{(a_1+a_{50})n}{2}=25(2a_1+49r)=25(-16+245)=5725


2) Sem perda de generalidade, diremos que os termos da sequência são: x-r,x,x+r onde r é a razão da progressão. Assim:

x-r+x+x+r=24\rightarrow x=8
x(x-r)(x+r)=440\rightarrow 8(8-r)(8+r)=440\rightarrow (8-r)(8+r)=55 \rightarrow r=\pm3.

Assim, se r=3 então o primeiro termo a_1=x-r=5 e se r=-3, então o primeiro termo será 11



3) Os múltiplos de nove formam uma p.a. de r=9. Devemos procurar o numero de termos da p.a. compreendidos no intervalo dado.

O primeiro múltiplo de nove, maior que 105 é 108, isto é, a_1=108=9.12
O último múltiplo de nove, menor que 1000 é 999, isto é, a_n=999=9.111

Decorre que:

a_n=a_1+(n-1)r\rightarrow 999=108+(n-1)9\rightarrow n-1=99\rightarrow n=100

Assim, existem 100 múltiplos.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: P.a e p.g

Mensagempor Luiza » Ter Jul 13, 2010 13:00

Nossa muito obrigada ! agora entendi !
Luiza
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Ter Nov 10, 2009 12:28
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: