A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por admin » Sex Jul 20, 2007 15:03
Numa festinha de aniversário havia uma caixa de bombons para as crianças. Cada uma pegou 2 bombons e sobraram 5 na caixa. Se cada criança tivesse pego 3 bombons, uma ficaria sem. Pergunto: Quantas crianças havia na festa e quantos bombons havia na caixa?
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por heroncius » Qui Set 06, 2007 21:16
n° de crianças é 7 e o total de bombons,19...tah correto?!
-
heroncius
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Ter Jul 31, 2007 11:22
por admin » Sex Set 07, 2007 05:45
heroncius escreveu:n° de crianças é 7 e o total de bombons,19...tah correto?!
Olá
heroncius!
Não dizendo diretamente, porque isso seria menos importante, vou representar o enunciado através de um sistema de equações, ok? Assim, você verifica sua resposta.
Vou nomear as variáveis:
B: número de bombons
C: número de crianças
Cada uma pegou 2 bombons e sobraram 5 na caixa.
Deste trecho, temos que:

Se cada criança tivesse pego 3 bombons, uma ficaria sem.
E deste:

Então, temos um sistema com duas equações e duas incógnitas:

Depois que você encontrar os valores, pode testá-los no próprio enunciado.
Inclusive, também pode fazer isso com estes que você já havia encontrado.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por heroncius » Sex Set 07, 2007 11:38
valeu pelo esclercimento Fábio,
abraço!!!
-
heroncius
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Ter Jul 31, 2007 11:22
por Kiraxx » Qui Jun 19, 2008 02:02
Fiz de cabeça mesmo, chutando valores aproximados... acho que tá certo...!
Primeiro eu pensei no número 10 para as crianças e não deu certo.
Depois pensei no 7 e cheguei quase lá.
Então cheguei no número 6. Com base nele pude chegar ao número 17 de bombons.
Eis a minha teoria:
Se 6 crianças pegam 2 bombons cada e ainda sobram 5, significa que haviam 17 bombons na caixa.

Se essas mesmas 6 crianças comessem 3 bombons cada, daria um total de 18 bombons, ou seja, uma criança ficaria sem.

Sendo assim, haviam
6 crianças e
17 bombons na caixa.
Acertei?

-
Kiraxx
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jun 19, 2008 01:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Adm. - Comércio Exterior
- Andamento: cursando
por admin » Qui Jun 19, 2008 02:26
Olá, boas-vindas!
Vale ressaltar que o método de tentativas e erros é, em geral, ineficiente.
De qualquer forma, os valores não estão corretos.
Percebo que você está mal interpretando o trecho "uma ficaria sem".
Uma criança ficar sem bombom é diferente de faltar um bombom!
Sugiro não ignorar o sistema linear.
Para "chutes" não teríamos argumentos matemáticos justificativos, bem como a discussão seria desnecessária.
Até mais!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Kiraxx » Qui Jun 19, 2008 02:29
Sendo assim, a primeira resposta dada ao problema está certa né!
Interpretei mal mesmo, rsrs...
Mas tá tranquilo, só queria me divertir um pouco...
Obrigado pela atenção!
-
Kiraxx
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jun 19, 2008 01:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Adm. - Comércio Exterior
- Andamento: cursando
por admin » Qui Jun 19, 2008 02:36
Olá, tudo bem, compreendo.
Aquela resposta também não está correta.
Repare que também falha na segunda parte do enunciado, faltariam 2 bombons, o que é diferente de "uma criança ficaria sem".
Se "uma ficaria sem", cada uma pegando 3, é necessário que faltem 3.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Kiraxx » Qui Jun 19, 2008 02:39
Cara, eu tinha feito as equações e o sistema que você montou de cabeça, e tinha dado 8. Mas eu não quis acreditar no resultado.
Olhando bem é exatamente isso né.
Tá certo... interessante como a nossa mente nos engana de vez em quando...!
-
Kiraxx
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jun 19, 2008 01:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Adm. - Comércio Exterior
- Andamento: cursando
por admin » Qui Jun 19, 2008 02:43
Isso Kiraxx, havia 8 crianças e 21 bombons.
Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Desafios Fáceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.