A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por admin » Sex Jul 20, 2007 15:03
Numa festinha de aniversário havia uma caixa de bombons para as crianças. Cada uma pegou 2 bombons e sobraram 5 na caixa. Se cada criança tivesse pego 3 bombons, uma ficaria sem. Pergunto: Quantas crianças havia na festa e quantos bombons havia na caixa?
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por heroncius » Qui Set 06, 2007 21:16
n° de crianças é 7 e o total de bombons,19...tah correto?!
-
heroncius
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Ter Jul 31, 2007 11:22
por admin » Sex Set 07, 2007 05:45
heroncius escreveu:n° de crianças é 7 e o total de bombons,19...tah correto?!
Olá
heroncius!
Não dizendo diretamente, porque isso seria menos importante, vou representar o enunciado através de um sistema de equações, ok? Assim, você verifica sua resposta.
Vou nomear as variáveis:
B: número de bombons
C: número de crianças
Cada uma pegou 2 bombons e sobraram 5 na caixa.
Deste trecho, temos que:

Se cada criança tivesse pego 3 bombons, uma ficaria sem.
E deste:

Então, temos um sistema com duas equações e duas incógnitas:

Depois que você encontrar os valores, pode testá-los no próprio enunciado.
Inclusive, também pode fazer isso com estes que você já havia encontrado.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por heroncius » Sex Set 07, 2007 11:38
valeu pelo esclercimento Fábio,
abraço!!!
-
heroncius
- Usuário Ativo

-
- Mensagens: 17
- Registrado em: Ter Jul 31, 2007 11:22
por Kiraxx » Qui Jun 19, 2008 02:02
Fiz de cabeça mesmo, chutando valores aproximados... acho que tá certo...!
Primeiro eu pensei no número 10 para as crianças e não deu certo.
Depois pensei no 7 e cheguei quase lá.
Então cheguei no número 6. Com base nele pude chegar ao número 17 de bombons.
Eis a minha teoria:
Se 6 crianças pegam 2 bombons cada e ainda sobram 5, significa que haviam 17 bombons na caixa.

Se essas mesmas 6 crianças comessem 3 bombons cada, daria um total de 18 bombons, ou seja, uma criança ficaria sem.

Sendo assim, haviam
6 crianças e
17 bombons na caixa.
Acertei?

-
Kiraxx
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jun 19, 2008 01:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Adm. - Comércio Exterior
- Andamento: cursando
por admin » Qui Jun 19, 2008 02:26
Olá, boas-vindas!
Vale ressaltar que o método de tentativas e erros é, em geral, ineficiente.
De qualquer forma, os valores não estão corretos.
Percebo que você está mal interpretando o trecho "uma ficaria sem".
Uma criança ficar sem bombom é diferente de faltar um bombom!
Sugiro não ignorar o sistema linear.
Para "chutes" não teríamos argumentos matemáticos justificativos, bem como a discussão seria desnecessária.
Até mais!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Kiraxx » Qui Jun 19, 2008 02:29
Sendo assim, a primeira resposta dada ao problema está certa né!
Interpretei mal mesmo, rsrs...
Mas tá tranquilo, só queria me divertir um pouco...
Obrigado pela atenção!
-
Kiraxx
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jun 19, 2008 01:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Adm. - Comércio Exterior
- Andamento: cursando
por admin » Qui Jun 19, 2008 02:36
Olá, tudo bem, compreendo.
Aquela resposta também não está correta.
Repare que também falha na segunda parte do enunciado, faltariam 2 bombons, o que é diferente de "uma criança ficaria sem".
Se "uma ficaria sem", cada uma pegando 3, é necessário que faltem 3.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Kiraxx » Qui Jun 19, 2008 02:39
Cara, eu tinha feito as equações e o sistema que você montou de cabeça, e tinha dado 8. Mas eu não quis acreditar no resultado.
Olhando bem é exatamente isso né.
Tá certo... interessante como a nossa mente nos engana de vez em quando...!
-
Kiraxx
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jun 19, 2008 01:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Adm. - Comércio Exterior
- Andamento: cursando
por admin » Qui Jun 19, 2008 02:43
Isso Kiraxx, havia 8 crianças e 21 bombons.
Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Desafios Fáceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.