• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Coordenadas de 8 pontos numa circunferencia

Coordenadas de 8 pontos numa circunferencia

Mensagempor cristfc » Qua Nov 05, 2008 15:43

minha pergunta é simples, na verdade não é pra nenhum curso nem nada, é pra um projeto pessoal mesmo..

eu tenho esse grafico abaixo:

Imagem

os pontos azuis são (20,0) o da direita e (0,20) o de baixo (o programa que vou usar interpreta como negativo acima do grafico e positivo pra baixo). O que eu preciso é descobrir as coordenadas no grafico dos pontos vermelhos, sendo que eles tem a mesma distancia entre eles e são 6 pontos

a variacao de inclinacao do angulo de um pra outro é 12.85714 eu apenas dividí 90/7, creio que isso seja muito facil mas nao sei a formula que uso pra resolver, eu gostaria de saber a formula pra resolver esse probleminha e descobrir essas coordenadas :)
abraços
cristfc
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 04, 2008 15:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Coordenadas de 8 pontos numa circunferencia

Mensagempor admin » Qua Nov 05, 2008 19:18

Olá cristfc, boas-vindas!

Sobre o programa interpretando o eixo y invertido, não se preocupe para o cálculo. Após obter as coordenadas procuradas, multiplique a ordenada y por -1 para refletir o ponto com relação ao eixo x.

Veja se esta figura ajuda:
circunferencia4.jpg


Como você pode ver, podemos utilizar as funções seno e cosseno, já que os ângulos a são conhecidos e há triângulos retângulos com as projeções:
a = k \cdot \frac{\frac{\pi}{2}}{7} = k \cdot \frac{\pi}{14}

Faça k variar em seu projeto, com k \in \left\{1, 2, 3, 4, 5, 6\right\}.
Note que representei o ângulo em radianos.
Cuidado ao utilizar as funções seno e cosseno em seu projeto pois normalmente os argumentos são esperados em radianos, não em graus.

Em resumo, dado um ponto P da circunferência de raio r e centro O, tal que P = (X_p, Y_p), então temos:

X_p = r \cdot cos\alpha
Y_p = r \cdot sen\alpha
Sendo \alpha o ângulo formado por OP e o eixo x.

Variando o ângulo, as coordenadas serão:
P = (r \cdot cos\alpha, r \cdot sen\alpha)

Para o caso particular:
P = \left(20 \cdot cos\left(\frac{k \pi}{14}\right), 20 \cdot sen\left(\frac{k \pi}{14}\right) \right)

k \in \left\{1, 2, 3, 4, 5, 6\right\}


Antes de utilizar, você precisa considerar a reflexão do ponto:
P' = \left(20 \cdot cos\left(\frac{k \pi}{14}\right), -20 \cdot sen\left(\frac{k \pi}{14}\right) \right)



Espero ter ajudado!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Coordenadas de 8 pontos numa circunferencia

Mensagempor cristfc » Seg Nov 10, 2008 22:04

obrigado, ajudou sim, e muito, finalmente conseguiu resolver isso.. estava quebrando a cabeça. vou por seu nome dos creditos hehehe :P


um abraço
cristfc
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 04, 2008 15:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Coordenadas de 8 pontos numa circunferencia

Mensagempor edwinaclima » Sáb Jul 10, 2010 11:44

Bom dia!

Preciso calcular o raio a partir de 3 coordenadas cartesianas. Como faço?

x y
8,59,-15,85
-3,87,-9,58
-12,35,-15,21

Dese já agradeço a ajuda
Edwin
edwinaclima
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jul 10, 2010 11:35
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}