• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Distância de ponto à reta (II)

Distância de ponto à reta (II)

Mensagempor Jonatan » Qua Jul 07, 2010 11:32

Determine as equações das retas que formam 45º com o eixo dos x e estão à distância \sqrt[]{2} do ponto P (3,4).

Pessoal, tentei fazer o seguinte:

Para uma reta:
y = ax + b
y = 1x + b (pois o a é o coeficiente angular, tg \Theta = a e no caso do execício, \Theta = 45º; tg 45º = 1)

Como as retas estão com inclinação de 45º em relação ao eixo dos x, trata-se de uma função identidade, em que o coeficiente linear é nulo e o coeficiente angular é 1).

E a outra reta, como faz?

Alguém pode resolver o exercício para mim, passo-a-passo? Estou com dúvidas nessa parte da matéria, estudo sozinho e fica meio complicado. Se alguém puder ajudar, agradeço.
Jonatan
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Jun 16, 2010 13:29
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Distância de ponto à reta (II)

Mensagempor Douglasm » Qua Jul 07, 2010 18:33

Olá Jonatan. Primeiramente sabemos que o coeficiente angular de ambas as retas é 1. Deste modo, eu fiz um desenho para ilustrar a situação:

retas.jpg
retas.jpg (8.37 KiB) Exibido 3176 vezes


(Conto com a sua boa vontade em verificar que os triângulos azuis possuem lados \sqrt{2}, 1 e 1)

Por conta disso, podemos encontrar os pontos de intersecção entre a reta que passa pelo ponto P e pelas duas retas. Evidentemente os pontos são (2,5) e (4,3). Finalmente é só determinarmos as retas:

y = x + 3 \;\mbox{e}\;y = x - 1
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Distância de ponto à reta (II)

Mensagempor Tom » Qui Jul 08, 2010 00:53

A resolução do Douglas está correta. Segue abaixo outro método para obter o mesmo resultado usando a técnica de translação:

Defina um sistema de coordenadas retangulares auxiliar x'oy' com origem no ponto P(3,4). Para esse sistema, a equação da circunferência em questão é : x'^2+y'^2=2 . Ao passo que no sistema de coordenadas convencional a equação seria (x-3)^2+(y-4)^2=2

Note que a equivalência translacional é, portanto: x'=x-3 e y'=y-4

Ainda para o sistema x'oy', como as retas que queremos achar possuem coeficiente angular igual a 1, basta verificar a intercessão com a circunferência supracitada fazendo y'=x'; assim obtemos : x'^2=y'^2=1 e, respeitando a posição dos eixos definidos obtemos os referidos pontos de intercessão (x',y') a saber: (1,-1);(-1,1)

Decorre assim que a equação das retas é: y'=x'+2 e y'=x'-2

Aplicando, agora, a equivalência translacional entre eixos:

Se y'=x'+2\rightarrow (y-4)=(x-3)+2, isto é, y=x+3

Se y'=x'-2\rightarrow (y-4)=(x-3)-2, isto é, y=x-1

Assim, no sistema de coordenadas convencional xoy as retas em questão são: y=x-1 e y=x+3
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Distância de ponto à reta (II)

Mensagempor MarceloFantini » Qui Jul 08, 2010 17:09

E existe a terceira resolução (que é bom que seja a última a ser apresentada) que é usando a fórmula de distância de ponto a reta;

d = \frac{\left|ax+by+c\right|}{\sqrt{a^2 + b^2}} \Rightarrow \sqrt {2} = \frac{\left|-3 +4 -b\right|}{\sqrt {(-1)^2 + 1^2}} \Rightarrow 2 = \left|1-b\right|

Logo, y = x+3 ou y = x -1
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Distância de ponto à reta (II)

Mensagempor Tom » Sex Jul 09, 2010 00:21

Fantini escreveu:(que é bom que seja a última a ser apresentada)



Uai ? *-)
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Distância de ponto à reta (II)

Mensagempor MarceloFantini » Sex Jul 09, 2010 11:20

Para que ele não se prenda a fórmulas e aprenda a pensar e ver outros jeitos de resolver.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.