por geriane » Seg Jul 05, 2010 13:54
Determine o argumento do complexo z=
![\frac{2}{\sqrt[]{3}+i} \frac{2}{\sqrt[]{3}+i}](/latexrender/pictures/93352a533da461030a525c4395e8591e.png)
.
O resultado é

.
Desde já obrigada pela compreensão.
-
geriane
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Sáb Abr 03, 2010 10:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura
- Andamento: formado
por Elcioschin » Seg Jul 05, 2010 15:45
z = 2/(V3 + i)
z = 2*(V3 - i)/(V3 + 1)*(V3 - i)
z = 2*(V3 - i)/(3 - i²)
z = 2*(V3 - i)/4
z = (V3 - i)/2
z = V3/2 - i/2 ----> cosx = + V3 , senx = - 1/2 ----> x está no 4º quadrante e equivale a um ângulo x = - 30º ou 11pi/6
z = cos(11pi/6) + sen(11pi/6)
Argumento = 11pi/6
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.