• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular os termos da PG

Calcular os termos da PG

Mensagempor Carolziiinhaaah » Qua Jun 16, 2010 14:16

Numa PG de três termos, o primeiro termo, a razão, o último termo e a soma dos termos formam, nessa ordem, uma PA. Calcule os termos da PG.

gabarito: \left( \frac{3}{5}, \frac{9}{5}, \frac{27}{5} \right) ou (-1, 1, -1)
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Calcular os termos da PG

Mensagempor Tom » Sáb Jul 03, 2010 00:34

Seja P:\{p_1,p_2,p_3\} uma P.G. de três termos e q a sua razão, conforme o enunciado: p_1,q,p_3,p_1+p_2+p_3 é uma P.A.

Usando uma propriedade de progressão aritmética: 2q=p_1+p_3 e usando a definição de progressão geométrica decorre em:
2q=p_1+p_1q^2, isto é, p_1q^2-2q+p_1=0 (i)

Analogamente, 2p_3=q+p_1+p_2+p_3, isto é, p_3=q+p_1+p_2 e decorre em : p_1q^2=q+p_1+p_1q (ii)

Subtraindo (i) de (ii): q=2p_1+p_1q, isto é, p_1=\dfrac{q}{2+q} (iii) e aplicando tal relação em (i), temos:

\dfrac{q^3}{2+q}-2q+\dfrac{q}{2+q}=0 \rightarrow q^3-2q(2+q)+q=0\rightarrow q^3-2q^2-3q=0, isto é, q(q^2-2q-3)=0

Assim, q=0 ou q^2-2q-3=0 cujas raízes são q=-1 ou q=3


Através de (iii), portanto:

Se q=0, então: p_1=0 e, nesse caso, os termos da P.G. são: p_1=p_2=p_3=0

Se q=-1, então: p_1=-1 e, nesse caso, os termos da P.G. são: p_1=-1;p_2=1;p_3=-1

Se q=3, então: p_1=\dfrac{3}{5} e, nesse caso, os termos da P.G. são: p_1=\dfrac{3}{5};p_2=\dfrac{9}{5};p_3=\dfrac{2
7}{5}

Eis as progressões geométricas:

(0,0,0) ou \left( \frac{3}{5}, \frac{9}{5}, \frac{27}{5} \right) ou (-1, 1, -1)
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.