• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular os termos da PG

Calcular os termos da PG

Mensagempor Carolziiinhaaah » Qua Jun 16, 2010 14:16

Numa PG de três termos, o primeiro termo, a razão, o último termo e a soma dos termos formam, nessa ordem, uma PA. Calcule os termos da PG.

gabarito: \left( \frac{3}{5}, \frac{9}{5}, \frac{27}{5} \right) ou (-1, 1, -1)
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Calcular os termos da PG

Mensagempor Tom » Sáb Jul 03, 2010 00:34

Seja P:\{p_1,p_2,p_3\} uma P.G. de três termos e q a sua razão, conforme o enunciado: p_1,q,p_3,p_1+p_2+p_3 é uma P.A.

Usando uma propriedade de progressão aritmética: 2q=p_1+p_3 e usando a definição de progressão geométrica decorre em:
2q=p_1+p_1q^2, isto é, p_1q^2-2q+p_1=0 (i)

Analogamente, 2p_3=q+p_1+p_2+p_3, isto é, p_3=q+p_1+p_2 e decorre em : p_1q^2=q+p_1+p_1q (ii)

Subtraindo (i) de (ii): q=2p_1+p_1q, isto é, p_1=\dfrac{q}{2+q} (iii) e aplicando tal relação em (i), temos:

\dfrac{q^3}{2+q}-2q+\dfrac{q}{2+q}=0 \rightarrow q^3-2q(2+q)+q=0\rightarrow q^3-2q^2-3q=0, isto é, q(q^2-2q-3)=0

Assim, q=0 ou q^2-2q-3=0 cujas raízes são q=-1 ou q=3


Através de (iii), portanto:

Se q=0, então: p_1=0 e, nesse caso, os termos da P.G. são: p_1=p_2=p_3=0

Se q=-1, então: p_1=-1 e, nesse caso, os termos da P.G. são: p_1=-1;p_2=1;p_3=-1

Se q=3, então: p_1=\dfrac{3}{5} e, nesse caso, os termos da P.G. são: p_1=\dfrac{3}{5};p_2=\dfrac{9}{5};p_3=\dfrac{2
7}{5}

Eis as progressões geométricas:

(0,0,0) ou \left( \frac{3}{5}, \frac{9}{5}, \frac{27}{5} \right) ou (-1, 1, -1)
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59