• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Desconto Bancario - Juros Simples

Desconto Bancario - Juros Simples

Mensagempor rafafernandes85 » Ter Jun 29, 2010 15:27

Uma empresa de Papel e Celulose quer abrir o seu capital e para isso procurou o Banco de
Investimento XYZ para coordenar a operação. Depois dos estudos preliminares, o Banco
recomendou a emissão de 400.000.000 de ações preferenciais ao VN (Valor Nominal) de R$ 1,00
(hum real) cada e começaram as negociações. A Empresa CBA condicionou a colocação de todo
o lote de ações proposto para pagamento de 40% à vista e o restante através de três títulos
iguais com vencimentos mensais a partir do primeiro mês após o lançamento. Sendo a taxa de
juro bancário para o desconto dos três títulos de 2,20% a.m. acrescido do IOFT e com o Banco
XYZ cobrando uma comissão de 5% sobre o valor de todo o lançamento das 400.000.000 de
ações, qual é o valor à vista que a Empresa CBA irá receber?

obs.:

IOF1 ->0,0041% a.d.
IOF2 -> 0,38% fixo
IOFT eh o valor dos 2 somados
rafafernandes85
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Jun 18, 2010 23:09
Formação Escolar: GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.