• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inteiro Estritamente Positivo

Inteiro Estritamente Positivo

Mensagempor gustavowelp » Dom Jun 27, 2010 22:18

Caros amigos:

Surgiu uma questão meio "estranha", a qual não entendi o que se pede:

Segue o enunciado:

Usando o fato de que, para qualquer n inteiro estritamente positivo, \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n.(n+1)} , é possível afirmar que o valor correto de \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + ... + \frac{1}{99.(99+1)} é:

A alternativa correta é \frac{99}{100}

Não entendi a Progressão (se é que se trata de uma Progressão...)

Obrigado!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Inteiro Estritamente Positivo

Mensagempor Molina » Dom Jun 27, 2010 23:55

Boa noite.

Entendi a lógica desse problema. Vamos ver se eu consigo passar o meu entendimento.

\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + ... + \frac{1}{99.(99+1)}

De acordo com o enunciado, posso escrever \frac{1}{2} como sendo \frac{1}{1}-\frac{1}{1+1}=\frac{1}{1}-\frac{1}{2}

Posso escrever também \frac{1}{6} como sendo \frac{1}{2}-\frac{1}{2+1}=\frac{1}{2}-\frac{1}{3}

Posso escrever \frac{1}{12} como \frac{1}{3}-\frac{1}{3+1}=\frac{1}{3}-\frac{1}{4}

E assim por diante. Até chegar em \frac{1}{99*(99+1)}=\frac{1}{99}-\frac{1}{99+1}=\frac{1}{99}-\frac{1}{100}


Então reescrevendo esta soma \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + ... + \frac{1}{99.(99+1)} e substituindo os valores encontrados, temos que:

\frac{1}{1}-\frac{1}{2} + \frac{1}{2}-\frac{1}{3} + \frac{1}{3}-\frac{1}{4} + ... + \frac{1}{99}-\frac{1}{100}

Mas perceba que os termos vão se anulando, como por exemplo -\frac{1}{2} + \frac{1}{2}. E você perceberá que ficará apenas o primeiro e o último termo, que não serão eliminados:

\frac{1}{1} + 0 + 0 + 0 + ... + 0 - \frac{1}{100} \Rightarrow \frac{1}{1} - \frac{1}{100} = \frac{99}{100}


Espero ter sido claro.


Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Inteiro Estritamente Positivo

Mensagempor gustavowelp » Seg Jun 28, 2010 07:01

Meu jovem, tu és o cara hein.

Sabe muito!!!

Muitíssimo obrigado Molina!
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.