• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressao aritmetica

Progressao aritmetica

Mensagempor yanagranhen » Seg Jun 21, 2010 23:11

(PUC) Quantos numeros inteiros compreendidos entre 1 e 1200 (inclusive) nao sao multiplos de 2 e nem de 3?
a)400
b)600
c)800
d)1000
e)200

Nessa questao tentei fazer por exclusao, tipo achei quanto valores serao multiplos de 3, depois de 2 , diminui pra tirar os repetidos como se fosse a intersecçao! Mas deu 200 e nao o gabarito que é 400! :(
Me ajudem!
yanagranhen
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jun 17, 2010 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia florestal
Andamento: cursando

Re: Progressao aritmetica

Mensagempor MarceloFantini » Ter Jun 22, 2010 00:53

Tente fazer usando múltiplos de 6.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressao aritmetica

Mensagempor yanagranhen » Qua Jun 23, 2010 22:44

Eu já tentei! Achei os multiplos de 6, fiz o a1= 6 e o ultimo termo 1200. Quando joguei na formula da soma deu 200!
Daí como a questão pede os NÃO multiplos de 2 nem de 3, diminui 200 de 1200 e deu como resposta 1000! Sendo que o gabarito diz que a resposta é 400! E agora? :-O
yanagranhen
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jun 17, 2010 00:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia florestal
Andamento: cursando

Re: Progressao aritmetica

Mensagempor Douglasm » Qui Jun 24, 2010 09:46

Esse é um exemplo do "princípio da inclusão-exclusão". Se você exclui o múltiplos de 2 e depois os múltiplos de 3, você acabou subtraindo 2 vezes os múltiplos de 6. Deste modo, para obter o resultado correto você deve somá-los:

Múltiplos de 2: \frac{[1200]}{2} = 600

Múltiplos de 3: \frac{[1200]}{3} = 400

Múltiplos de 2 e 3 (6) = \frac{[1200]}{6} = 200

Deste modo:

1200 - 600 - 400 + 200 = 400

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?