• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Valor da soma de n parcelas (PG)

Valor da soma de n parcelas (PG)

Mensagempor Carolziiinhaaah » Qua Jun 16, 2010 14:07

Mais uma de PG, gente..

Calcule o valor da soma de n parcelas 1 + 11 + 111 + ... + 111...1 ( n "uns" ).

gabarito: \frac{{10}^{n+1} - 9n - 10}{81}
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Valor da soma de n parcelas (PG)

Mensagempor Douglasm » Ter Jun 22, 2010 18:54

Nesse caso, é só reescrevermos da seguinte forma:

1 + 11 + 111 + 1111 + ... + 11111(n vezes) = 1 + (10 + 1) + (100 + 10 + 1) + ...

Deste modo vamos calcular a soma de cada uma dessas progressões (cada um dos fatores). Para o último fator:

S_n = \frac{1.(10^n - 1)}{10-1} = \frac{10^n - 1}{9}

É evidente que para os outros fatores nós teremos:

S_{n-1} = \frac{10^{n-1}-1}{9} \; ; \; S_{n-2} = \frac{10^{n-2}-1}{9} \; (...)

Somando isso tudo:

S_t = \frac{(10^n + 10^{n-1} + 10^{n-2} + (...) + 10) - n}{9}\; \; \; \fbox{1}

Agora temos uma outra progressão dentro dos parênteses:

(10^n + 10^{n-1} + 10^{n-2} + (...) + 10) = \frac{10(10^n-1)}{10-1} = \frac{10^{n+1} - 10}{9}

Finalmente, substituindo esse valor em "1":

S_t = \frac{10^{n+1} - 10}{81} - \frac{n}{9} = \frac{10^{n+1}-9n-10}{81}

E está ai a resposta.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Valor da soma de n parcelas (PG)

Mensagempor Carolziiinhaaah » Qua Jun 23, 2010 17:57

Obrigada Douglas! Você é demais :D
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}