• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Valor da soma de n parcelas (PG)

Valor da soma de n parcelas (PG)

Mensagempor Carolziiinhaaah » Qua Jun 16, 2010 14:07

Mais uma de PG, gente..

Calcule o valor da soma de n parcelas 1 + 11 + 111 + ... + 111...1 ( n "uns" ).

gabarito: \frac{{10}^{n+1} - 9n - 10}{81}
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Valor da soma de n parcelas (PG)

Mensagempor Douglasm » Ter Jun 22, 2010 18:54

Nesse caso, é só reescrevermos da seguinte forma:

1 + 11 + 111 + 1111 + ... + 11111(n vezes) = 1 + (10 + 1) + (100 + 10 + 1) + ...

Deste modo vamos calcular a soma de cada uma dessas progressões (cada um dos fatores). Para o último fator:

S_n = \frac{1.(10^n - 1)}{10-1} = \frac{10^n - 1}{9}

É evidente que para os outros fatores nós teremos:

S_{n-1} = \frac{10^{n-1}-1}{9} \; ; \; S_{n-2} = \frac{10^{n-2}-1}{9} \; (...)

Somando isso tudo:

S_t = \frac{(10^n + 10^{n-1} + 10^{n-2} + (...) + 10) - n}{9}\; \; \; \fbox{1}

Agora temos uma outra progressão dentro dos parênteses:

(10^n + 10^{n-1} + 10^{n-2} + (...) + 10) = \frac{10(10^n-1)}{10-1} = \frac{10^{n+1} - 10}{9}

Finalmente, substituindo esse valor em "1":

S_t = \frac{10^{n+1} - 10}{81} - \frac{n}{9} = \frac{10^{n+1}-9n-10}{81}

E está ai a resposta.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Valor da soma de n parcelas (PG)

Mensagempor Carolziiinhaaah » Qua Jun 23, 2010 17:57

Obrigada Douglas! Você é demais :D
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: